TuringsSolutions
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -24,7 +24,7 @@ class SwarmAgent:
|
|
24 |
class SwarmNeuralNetwork:
|
25 |
def __init__(self, num_agents, image_shape, target_image_path):
|
26 |
self.image_shape = image_shape
|
27 |
-
self.resized_shape = (
|
28 |
self.agents = [SwarmAgent(self.random_position(), self.random_velocity()) for _ in range(num_agents)]
|
29 |
self.target_image = self.load_target_image(target_image_path)
|
30 |
self.generated_image = np.random.randn(*image_shape) # Start with noise
|
@@ -127,7 +127,7 @@ class SwarmNeuralNetwork:
|
|
127 |
mse = np.mean(((self.generated_image * 2 - 1) - self.target_image)**2)
|
128 |
logging.info(f"Epoch {epoch}, MSE: {mse}")
|
129 |
|
130 |
-
if epoch %
|
131 |
print(f"Epoch {epoch}, MSE: {mse}")
|
132 |
self.display_image(self.generated_image, title=f'Epoch {epoch}')
|
133 |
self.current_epoch += 1
|
@@ -161,7 +161,7 @@ class SwarmNeuralNetwork:
|
|
161 |
self.current_epoch = model_state['current_epoch']
|
162 |
|
163 |
@spaces.GPU(duration=120)
|
164 |
-
def generate_new_image(self, num_steps=
|
165 |
for agent in self.agents:
|
166 |
agent.position = np.random.randn(*self.image_shape)
|
167 |
|
@@ -184,7 +184,7 @@ class SwarmNeuralNetwork:
|
|
184 |
|
185 |
# Gradio Interface
|
186 |
def train_snn(image_path, num_agents, epochs, arm_position, leg_position, brightness, contrast, color):
|
187 |
-
snn = SwarmNeuralNetwork(num_agents=num_agents, image_shape=(
|
188 |
|
189 |
# Apply user-specified adjustments to the target image
|
190 |
image = Image.open(image_path)
|
@@ -203,7 +203,7 @@ def train_snn(image_path, num_agents, epochs, arm_position, leg_position, bright
|
|
203 |
return generated_image
|
204 |
|
205 |
def generate_new_image():
|
206 |
-
snn = SwarmNeuralNetwork(num_agents=
|
207 |
snn.load_model('snn_model.npy')
|
208 |
new_image = snn.generate_new_image()
|
209 |
return new_image
|
@@ -212,8 +212,8 @@ interface = gr.Interface(
|
|
212 |
fn=train_snn,
|
213 |
inputs=[
|
214 |
gr.Image(type="filepath", label="Upload Target Image"),
|
215 |
-
gr.Slider(minimum=
|
216 |
-
gr.Slider(minimum=
|
217 |
gr.Slider(minimum=-100, maximum=100, value=0, label="Arm Position"),
|
218 |
gr.Slider(minimum=-100, maximum=100, value=0, label="Leg Position"),
|
219 |
gr.Slider(minimum=0.5, maximum=2.0, value=1.0, label="Brightness"),
|
|
|
24 |
class SwarmNeuralNetwork:
|
25 |
def __init__(self, num_agents, image_shape, target_image_path):
|
26 |
self.image_shape = image_shape
|
27 |
+
self.resized_shape = (128, 128, 3) # Reduced resolution
|
28 |
self.agents = [SwarmAgent(self.random_position(), self.random_velocity()) for _ in range(num_agents)]
|
29 |
self.target_image = self.load_target_image(target_image_path)
|
30 |
self.generated_image = np.random.randn(*image_shape) # Start with noise
|
|
|
127 |
mse = np.mean(((self.generated_image * 2 - 1) - self.target_image)**2)
|
128 |
logging.info(f"Epoch {epoch}, MSE: {mse}")
|
129 |
|
130 |
+
if epoch % 2 == 0: # Display more frequently for faster feedback
|
131 |
print(f"Epoch {epoch}, MSE: {mse}")
|
132 |
self.display_image(self.generated_image, title=f'Epoch {epoch}')
|
133 |
self.current_epoch += 1
|
|
|
161 |
self.current_epoch = model_state['current_epoch']
|
162 |
|
163 |
@spaces.GPU(duration=120)
|
164 |
+
def generate_new_image(self, num_steps=200): # Reduced number of steps
|
165 |
for agent in self.agents:
|
166 |
agent.position = np.random.randn(*self.image_shape)
|
167 |
|
|
|
184 |
|
185 |
# Gradio Interface
|
186 |
def train_snn(image_path, num_agents, epochs, arm_position, leg_position, brightness, contrast, color):
|
187 |
+
snn = SwarmNeuralNetwork(num_agents=num_agents, image_shape=(128, 128, 3), target_image_path=image_path) # Reduced resolution
|
188 |
|
189 |
# Apply user-specified adjustments to the target image
|
190 |
image = Image.open(image_path)
|
|
|
203 |
return generated_image
|
204 |
|
205 |
def generate_new_image():
|
206 |
+
snn = SwarmNeuralNetwork(num_agents=1000, image_shape=(128, 128, 3), target_image_path=None) # Reduced number of agents
|
207 |
snn.load_model('snn_model.npy')
|
208 |
new_image = snn.generate_new_image()
|
209 |
return new_image
|
|
|
212 |
fn=train_snn,
|
213 |
inputs=[
|
214 |
gr.Image(type="filepath", label="Upload Target Image"),
|
215 |
+
gr.Slider(minimum=100, maximum=1000, value=500, label="Number of Agents"), # Further reduced range for number of agents
|
216 |
+
gr.Slider(minimum=5, maximum=20, value=10, label="Number of Epochs"), # Further reduced range for number of epochs
|
217 |
gr.Slider(minimum=-100, maximum=100, value=0, label="Arm Position"),
|
218 |
gr.Slider(minimum=-100, maximum=100, value=0, label="Leg Position"),
|
219 |
gr.Slider(minimum=0.5, maximum=2.0, value=1.0, label="Brightness"),
|