TuringsSolutions commited on
Commit
bc7a8d3
·
verified ·
1 Parent(s): 1ab990e

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +5 -0
app.py CHANGED
@@ -1,4 +1,5 @@
1
  import os
 
2
  import gradio as gr
3
  import numpy as np
4
  import tensorflow as tf
@@ -86,6 +87,7 @@ class SwarmNeuralNetwork:
86
 
87
  return np.array(losses)
88
 
 
89
  def update_agents(self, timestep):
90
  noise_level = self.noise_schedule[min(timestep, len(self.noise_schedule) - 1)]
91
 
@@ -102,6 +104,7 @@ class SwarmNeuralNetwork:
102
  # Clip values
103
  agent.position = np.clip(agent.position, -1, 1)
104
 
 
105
  def generate_image(self):
106
  self.generated_image = np.mean([agent.position for agent in self.agents], axis=0)
107
  # Normalize to [0, 1] range for display
@@ -113,6 +116,7 @@ class SwarmNeuralNetwork:
113
  image_pil = image_pil.filter(ImageFilter.SHARPEN)
114
  self.generated_image = np.array(image_pil) / 255.0
115
 
 
116
  def train(self, epochs):
117
  logging.basicConfig(filename='training.log', level=logging.INFO)
118
 
@@ -156,6 +160,7 @@ class SwarmNeuralNetwork:
156
  self.generated_image = model_state['generated_image']
157
  self.current_epoch = model_state['current_epoch']
158
 
 
159
  def generate_new_image(self, num_steps=500): # Optimized number of steps
160
  for agent in self.agents:
161
  agent.position = np.random.randn(*self.image_shape)
 
1
  import os
2
+ import spaces
3
  import gradio as gr
4
  import numpy as np
5
  import tensorflow as tf
 
87
 
88
  return np.array(losses)
89
 
90
+ @spaces.GPU(duration=120)
91
  def update_agents(self, timestep):
92
  noise_level = self.noise_schedule[min(timestep, len(self.noise_schedule) - 1)]
93
 
 
104
  # Clip values
105
  agent.position = np.clip(agent.position, -1, 1)
106
 
107
+ @spaces.GPU(duration=120)
108
  def generate_image(self):
109
  self.generated_image = np.mean([agent.position for agent in self.agents], axis=0)
110
  # Normalize to [0, 1] range for display
 
116
  image_pil = image_pil.filter(ImageFilter.SHARPEN)
117
  self.generated_image = np.array(image_pil) / 255.0
118
 
119
+ @spaces.GPU(duration=120)
120
  def train(self, epochs):
121
  logging.basicConfig(filename='training.log', level=logging.INFO)
122
 
 
160
  self.generated_image = model_state['generated_image']
161
  self.current_epoch = model_state['current_epoch']
162
 
163
+ @spaces.GPU(duration=120)
164
  def generate_new_image(self, num_steps=500): # Optimized number of steps
165
  for agent in self.agents:
166
  agent.position = np.random.randn(*self.image_shape)