Spaces:
Paused
Paused
import gradio as gr | |
from transformers import AutoModelForCausalLM, AutoTokenizer | |
from transformers.generation import GenerationConfig | |
import re | |
import copy | |
from pathlib import Path | |
import secrets | |
import torch | |
from PIL import Image, ImageDraw | |
model_name = "qwen/Qwen-VL-Chat" | |
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True) | |
model = AutoModelForCausalLM.from_pretrained(model_name, trust_remote_code=True).eval() | |
model.generation_config = GenerationConfig.from_pretrained(model_name, trust_remote_code=True) | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
model.to(device) | |
task_history = [] | |
BOX_TAG_PATTERN = r"<box>([\s\S]*?)</box>" | |
PUNCTUATION = "!?。"#$%&'()*+,-/:;<=>@[\]^_`{|}~⦅⦆「」、、〃》「」『』​``【oaicite:0】``​〔〕〖〗〘〙〚〛〜〝〞〟〰〾〿–—‘’‛“”„‟…‧﹏." | |
def save_image(image_file, upload_dir: str) -> str: | |
Path(upload_dir).mkdir(parents=True, exist_ok=True) | |
filename = secrets.token_hex(10) + Path(image_file.name).suffix | |
file_path = Path(upload_dir) / filename | |
with open(image_file, "rb") as f_input, open(file_path, "wb") as f_output: | |
f_output.write(f_input.read()) | |
return str(file_path) | |
def clean_response(response: str) -> str: | |
response = re.sub(r'<ref>(.*?)</ref>(?:<box>.*?</box>)*(?:<quad>.*?</quad>)*', r'\1', response).strip() | |
return response | |
def chat_with_model(image_path=None, text_query=None, history=None): | |
# Modify this function to use 'history' if your model requires it | |
query_elements = [] | |
if image_path: | |
query_elements.append({'image': image_path}) | |
if text_query: | |
query_elements.append({'text': text_query}) | |
# Add history processing here if needed | |
query = tokenizer.from_list_format(query_elements) | |
tokenized_inputs = tokenizer(query, return_tensors='pt').to(device) | |
output = model.generate(**tokenized_inputs) | |
response = tokenizer.decode(output[0], skip_special_tokens=True) | |
cleaned_response = clean_response(response) | |
return cleaned_response | |
def draw_boxes(image_path, response): | |
image = Image.open(image_path) | |
draw = ImageDraw.Draw(image) | |
boxes = re.findall(r'<box>\((\d+),(\d+)\),\((\d+),(\d+)\)</box>', response) | |
for box in boxes: | |
x1, y1, x2, y2 = map(int, box) | |
draw.rectangle([x1, y1, x2, y2], outline="red", width=3) | |
return image | |
def process_input(text=None, file=None, task_history=None): | |
if task_history is None: | |
task_history = [] | |
image_path = None | |
if file is not None: | |
image_path = save_image(file, "uploaded_images") | |
response = chat_with_model(image_path=image_path, text_query=text, history=task_history) | |
task_history.append((text, response)) | |
if "<box>" in response: | |
if image_path: | |
image_with_boxes = draw_boxes(image_path, response) | |
image_with_boxes_path = image_path.replace(".jpg", "_boxed.jpg") | |
image_with_boxes.save(image_with_boxes_path) | |
return [("bot", response), "image", image_with_boxes_path], task_history | |
else: | |
return [("bot", response), "text", None], task_history | |
else: | |
# Clean the response if it contains any box-like annotations | |
clean_response = re.sub(r'<ref>(.*?)</ref>(?:<box>.*?</box>)*(?:<quad>.*?</quad>)*', r'\1', response).strip() | |
return [("bot", clean_response)], task_history | |
# Define Gradio interface | |
with gr.Blocks() as demo: | |
gr.Markdown(""" | |
# 🙋🏻♂️欢迎来到🌟Tonic 的🦆Qwen-VL-Chat🤩Bot!🚀 | |
# 🙋🏻♂️Welcome toTonic's Qwen-VL-Chat Bot! | |
该WebUI基于Qwen-VL-Chat,实现聊天机器人功能。 但我必须解决它的很多问题,也许我也能获得一些荣誉。 | |
Qwen-VL-Chat 是一种多模式输入模型。 您可以使用此空间来测试当前模型 [qwen/Qwen-VL-Chat](https://huggingface.co./qwen/Qwen-VL-Chat) 您也可以使用 🧑🏻🚀qwen/Qwen-VL -通过克隆这个空间来聊天🚀。 🧬🔬🔍 只需点击这里:[重复空间](https://huggingface.co./spaces/Tonic1/VLChat?duplicate=true) | |
加入我们:🌟TeamTonic🌟总是在制作很酷的演示! 在 👻Discord 上加入我们活跃的构建者🛠️社区:[Discord](https://discord.gg/nXx5wbX9) 在 🤗Huggingface 上:[TeamTonic](https://huggingface.co./TeamTonic) 和 [MultiTransformer](https:/ /huggingface.co/MultiTransformer) 在 🌐Github 上:[Polytonic](https://github.com/tonic-ai) 并为 🌟 [PolyGPT](https://github.com/tonic-ai/polygpt-alpha) 做出贡献 ) | |
This WebUI is based on Qwen-VL-Chat, implementing chatbot functionalities. Qwen-VL-Chat is a multimodal input model. You can use this Space to test out the current model [qwen/Qwen-VL-Chat](https://huggingface.co./qwen/Qwen-VL-Chat) You can also use qwen/Qwen-VL-Chat🚀 by cloning this space. Simply click here: [Duplicate Space](https://huggingface.co./spaces/Tonic1/VLChat?duplicate=true) | |
Join us: TeamTonic is always making cool demos! Join our active builder's community on Discord: [Discord](https://discord.gg/nXx5wbX9) On Huggingface: [TeamTonic](https://huggingface.co./TeamTonic) & [MultiTransformer](https://huggingface.co./MultiTransformer) On Github: [Polytonic](https://github.com/tonic-ai) & contribute to [PolyGPT](https://github.com/tonic-ai/polygpt-alpha) | |
""") | |
with gr.Row(): | |
with gr.Column(scale=1): | |
chatbot = gr.Chatbot(label='Qwen-VL-Chat') | |
with gr.Column(scale=1): | |
with gr.Row(): | |
query = gr.Textbox(lines=2, label='Input', placeholder="Type your message here...") | |
file_upload = gr.File(label="Upload Image") | |
submit_btn = gr.Button("Submit") | |
task_history = gr.State([]) | |
submit_btn.click( | |
fn=process_input, | |
inputs=[query, file_upload, task_history], | |
outputs=[chatbot, task_history] | |
) | |
gr.Markdown(""" | |
注意:此演示受 Qwen-VL 原始许可证的约束。我们强烈建议用户不要故意生成或允许他人故意生成有害内容, | |
包括仇恨言论、暴力、色情、欺骗等。(注:本演示受Qwen-VL许可协议约束,强烈建议用户不要传播或允许他人传播以下内容,包括但不限于仇恨言论、暴力、色情、欺诈相关的有害信息 .) | |
Note: This demo is governed by the original license of Qwen-VL. We strongly advise users not to knowingly generate or allow others to knowingly generate harmful content, | |
including hate speech, violence, pornography, deception, etc. (Note: This demo is subject to the license agreement of Qwen-VL. We strongly advise users not to disseminate or allow others to disseminate the following content, including but not limited to hate speech, violence, pornography, and fraud-related harmful information.) | |
""") | |
demo.queue().launch() | |
if __name__ == "__main__": | |
demo.launch() |