Tonic commited on
Commit
cfa5bb7
·
1 Parent(s): 28aebb4

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +104 -65
app.py CHANGED
@@ -1,78 +1,117 @@
1
- from transformers import AutoTokenizer, AutoModelForCausalLM
2
- import torch
3
- import os
4
  import gradio as gr
5
- import sentencepiece
6
-
7
-
8
- os.environ['PYTORCH_CUDA_ALLOC_CONF'] = 'max_split_size_mb:120'
9
- model_id = "01-ai/Yi-6B-200K"
10
- tokenizer_path = "./"
11
- eos_token_id = 7
12
-
13
- DESCRIPTION = """
14
- # 👋🏻Welcome to 🙋🏻‍♂️Tonic's🧑🏻‍🚀YI-200K🚀
15
- You can use this Space to test out the current model [01-ai/Yi-6B-200k](https://huggingface.co/01-ai/Yi-6B-200k) "🦙Llamified" version based on [01-ai/Yi-34B](https://huggingface.co/01-ai/Yi-34B) or try the [OAI-style connector](https://huggingface.co/spaces/Tonic/EasyYI) that we use for [AGYintelligence](https://huggingface.co/spaces/Tonic/AGYIntelligence).
16
- You can also use 🧑🏻‍🚀YI-200K🚀 by cloning this space. 🧬🔬🔍 Simply click here: <a style="display:inline-block" href="https://huggingface.co/spaces/Tonic1/YiTonic?duplicate=true"><img src="https://img.shields.io/badge/-Duplicate%20Space-blue?labelColor=white&style=flat&logo=&logoWidth=14" alt="Duplicate Space"></a></h3>
17
- Join us : 🌟TeamTonic🌟 is always making cool demos! Join our active builder's🛠️community on 👻Discord: [Discord](https://discord.gg/nXx5wbX9) On 🤗Huggingface: [TeamTonic](https://huggingface.co/TeamTonic) & [MultiTransformer](https://huggingface.co/MultiTransformer) On 🌐Github: [Polytonic](https://github.com/tonic-ai) & contribute to 🌟 [PolyGPT](https://github.com/tonic-ai/polygpt-alpha)
18
- """
19
-
20
- tokenizer = AutoTokenizer.from_pretrained(model_id, device_map="auto", trust_remote_code=True)
21
- # tokenizer = YiTokenizer.from_pretrained(tokenizer_path)
22
- model = AutoModelForCausalLM.from_pretrained(model_id, device_map="auto", torch_dtype=torch.bfloat16, trust_remote_code=True)
23
- tokenizer.eos_token_id = eos_token_id
24
- model.config.eos_token_id = eos_token_id
25
 
26
- def format_prompt(user_message, system_message="You are YiTonic, an AI language model created by Tonic-AI. You are a cautious assistant. You carefully follow instructions. You are helpful and harmless and follow ethical guidelines and promote positive behavior."):
27
- prompt = f"<|im_start|>assistant\n{system_message}<|im_end|>\n<|im_start|>\nuser\n{user_message}<|im_end|>\nassistant\n"
28
- return prompt
 
29
 
30
- def predict(message, system_message, max_new_tokens=4056, temperature=3.5, top_p=0.9, top_k=40, model_max_length = 32000, do_sample=False):
31
- formatted_prompt = format_prompt(message, system_message)
 
32
 
33
- input_ids = tokenizer.encode(formatted_prompt, return_tensors='pt')
34
- input_ids = input_ids.to(model.device)
35
 
36
- response_ids = model.generate(
37
- input_ids,
38
- max_length=max_new_tokens + input_ids.shape[1],
39
- temperature=temperature,
40
- top_p=top_p,
41
- top_k=top_k,
42
- no_repeat_ngram_size=9,
43
- pad_token_id=tokenizer.eos_token_id,
44
- do_sample=do_sample
45
- )
46
 
47
- response = tokenizer.decode(response_ids[:, input_ids.shape[-1]:][0], skip_special_tokens=True)
48
- truncate_str = "<|im_end|>"
49
- if truncate_str and truncate_str in response:
50
- response = response.split(truncate_str)[0]
51
 
52
- return [("bot", response)]
53
- with gr.Blocks(theme='ParityError/Anime') as demo:
54
- gr.Markdown(DESCRIPTION)
55
- with gr.Group():
56
- textbox = gr.Textbox(placeholder='Your Message Here', label='Your Message', lines=2)
57
- system_prompt = gr.Textbox(placeholder='Provide a System Prompt In The First Person', label='System Prompt', lines=2, value="You are YiTonic, an AI language model created by Tonic-AI. You are a cautious assistant. You carefully follow instructions. You are helpful and harmless and you follow ethical guidelines and promote positive behavior.")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
58
 
59
- with gr.Group():
60
- chatbot = gr.Chatbot(label='TonicYi-6B-200K-🧠🤯')
 
 
 
 
 
 
61
 
62
- with gr.Group():
63
- submit_button = gr.Button('Submit', variant='primary')
 
 
 
 
 
 
 
 
 
 
64
 
65
- with gr.Accordion(label='Advanced options', open=False):
66
- max_new_tokens = gr.Slider(label='Max New Tokens', minimum=1, maximum=55000, step=1, value=4056)
67
- temperature = gr.Slider(label='Temperature', minimum=0.1, maximum=4.0, step=0.1, value=1.2)
68
- top_p = gr.Slider(label='Top-P (nucleus sampling)', minimum=0.05, maximum=1.0, step=0.05, value=0.9)
69
- top_k = gr.Slider(label='Top-K', minimum=1, maximum=1000, step=1, value=40)
70
- do_sample_checkbox = gr.Checkbox(label='Disable for faster inference', value=True)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
71
 
72
- submit_button.click(
73
- fn=predict,
74
- inputs=[textbox, system_prompt, max_new_tokens, temperature, top_p, top_k, do_sample_checkbox],
75
- outputs=chatbot
76
  )
 
 
 
 
 
 
 
 
77
 
78
- demo.launch()
 
 
 
 
 
1
  import gradio as gr
2
+ from transformers import AutoModelForCausalLM, AutoTokenizer
3
+ from transformers.generation import GenerationConfig
4
+ import re
5
+ import copy
6
+ from pathlib import Path
7
+ import secrets
8
+ import torch
9
+ from PIL import Image, ImageDraw
 
 
 
 
 
 
 
 
 
 
 
 
10
 
11
+ model_name = "qwen/Qwen-VL-Chat"
12
+ tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
13
+ model = AutoModelForCausalLM.from_pretrained(model_name, trust_remote_code=True).eval()
14
+ model.generation_config = GenerationConfig.from_pretrained(model_name, trust_remote_code=True)
15
 
16
+ device = "cuda" if torch.cuda.is_available() else "cpu"
17
+ model.to(device)
18
+ task_history = []
19
 
20
+ BOX_TAG_PATTERN = r"<box>([\s\S]*?)</box>"
21
+ PUNCTUATION = "!?。"#$%&'()*+,-/:;<=>@[\]^_`{|}~⦅⦆「」、、〃》「」『』&#8203;``【oaicite:0】``&#8203;〔〕〖〗〘〙〚〛〜〝〞〟〰〾〿–—‘’‛“”„‟…‧﹏."
22
 
23
+ def save_image(image_file, upload_dir: str) -> str:
24
+ Path(upload_dir).mkdir(parents=True, exist_ok=True)
25
+ filename = secrets.token_hex(10) + Path(image_file.name).suffix
26
+ file_path = Path(upload_dir) / filename
27
+ with open(image_file, "rb") as f_input, open(file_path, "wb") as f_output:
28
+ f_output.write(f_input.read())
29
+ return str(file_path)
 
 
 
30
 
31
+ def clean_response(response: str) -> str:
32
+ response = re.sub(r'<ref>(.*?)</ref>(?:<box>.*?</box>)*(?:<quad>.*?</quad>)*', r'\1', response).strip()
33
+ return response
 
34
 
35
+ def chat_with_model(image_path=None, text_query=None, history=None):
36
+ # Modify this function to use 'history' if your model requires it
37
+ query_elements = []
38
+ if image_path:
39
+ query_elements.append({'image': image_path})
40
+ if text_query:
41
+ query_elements.append({'text': text_query})
42
+ # Add history processing here if needed
43
+ query = tokenizer.from_list_format(query_elements)
44
+ tokenized_inputs = tokenizer(query, return_tensors='pt').to(device)
45
+ output = model.generate(**tokenized_inputs)
46
+ response = tokenizer.decode(output[0], skip_special_tokens=True)
47
+ cleaned_response = clean_response(response)
48
+ return cleaned_response
49
+ def draw_boxes(image_path, response):
50
+ image = Image.open(image_path)
51
+ draw = ImageDraw.Draw(image)
52
+ boxes = re.findall(r'<box>\((\d+),(\d+)\),\((\d+),(\d+)\)</box>', response)
53
+ for box in boxes:
54
+ x1, y1, x2, y2 = map(int, box)
55
+ draw.rectangle([x1, y1, x2, y2], outline="red", width=3)
56
+ return image
57
 
58
+ def process_input(text=None, file=None, task_history=None):
59
+ if task_history is None:
60
+ task_history = []
61
+ image_path = None
62
+ if file is not None:
63
+ image_path = save_image(file, "uploaded_images")
64
+ response = chat_with_model(image_path=image_path, text_query=text, history=task_history)
65
+ task_history.append((text, response))
66
 
67
+ if "<box>" in response:
68
+ if image_path:
69
+ image_with_boxes = draw_boxes(image_path, response)
70
+ image_with_boxes_path = image_path.replace(".jpg", "_boxed.jpg")
71
+ image_with_boxes.save(image_with_boxes_path)
72
+ return [("bot", response), "image", image_with_boxes_path], task_history
73
+ else:
74
+ return [("bot", response), "text", None], task_history
75
+ else:
76
+ # Clean the response if it contains any box-like annotations
77
+ clean_response = re.sub(r'<ref>(.*?)</ref>(?:<box>.*?</box>)*(?:<quad>.*?</quad>)*', r'\1', response).strip()
78
+ return [("bot", clean_response)], task_history
79
 
80
+ # Define Gradio interface
81
+ with gr.Blocks() as demo:
82
+ gr.Markdown("""
83
+ # 🙋🏻‍♂️欢迎来到🌟Tonic 的🦆Qwen-VL-Chat🤩Bot!🚀
84
+ # 🙋🏻‍♂️Welcome toTonic's Qwen-VL-Chat Bot!
85
+ 该WebUI基于Qwen-VL-Chat,实现聊天机器人功能。 但我必须解决它的很多问题,也许我也能获得一些荣誉。
86
+ Qwen-VL-Chat 是一种多模式输入模型。 您可以使用此空间来测试当前模型 [qwen/Qwen-VL-Chat](https://huggingface.co/qwen/Qwen-VL-Chat) 您也可以使用 🧑🏻‍🚀qwen/Qwen-VL -通过克隆这个空间来聊天🚀。 🧬🔬🔍 只需点击这里:[重复空间](https://huggingface.co/spaces/Tonic1/VLChat?duplicate=true)
87
+ 加入我们:🌟TeamTonic🌟总是在制作很酷的演示! 在 👻Discord 上加入我们活跃的构建者🛠️社区:[Discord](https://discord.gg/nXx5wbX9) 在 🤗Huggingface 上:[TeamTonic](https://huggingface.co/TeamTonic) 和 [MultiTransformer](https:/ /huggingface.co/MultiTransformer) 在 🌐Github 上:[Polytonic](https://github.com/tonic-ai) 并为 🌟 [PolyGPT](https://github.com/tonic-ai/polygpt-alpha) 做出贡献 )
88
+ This WebUI is based on Qwen-VL-Chat, implementing chatbot functionalities. Qwen-VL-Chat is a multimodal input model. You can use this Space to test out the current model [qwen/Qwen-VL-Chat](https://huggingface.co/qwen/Qwen-VL-Chat) You can also use qwen/Qwen-VL-Chat🚀 by cloning this space. Simply click here: [Duplicate Space](https://huggingface.co/spaces/Tonic1/VLChat?duplicate=true)
89
+ Join us: TeamTonic is always making cool demos! Join our active builder's community on Discord: [Discord](https://discord.gg/nXx5wbX9) On Huggingface: [TeamTonic](https://huggingface.co/TeamTonic) & [MultiTransformer](https://huggingface.co/MultiTransformer) On Github: [Polytonic](https://github.com/tonic-ai) & contribute to [PolyGPT](https://github.com/tonic-ai/polygpt-alpha)
90
+ """)
91
+ with gr.Row():
92
+ with gr.Column(scale=1):
93
+ chatbot = gr.Chatbot(label='Qwen-VL-Chat')
94
+ with gr.Column(scale=1):
95
+ with gr.Row():
96
+ query = gr.Textbox(lines=2, label='Input', placeholder="Type your message here...")
97
+ file_upload = gr.File(label="Upload Image")
98
+ submit_btn = gr.Button("Submit")
99
+
100
+ task_history = gr.State([])
101
 
102
+ submit_btn.click(
103
+ fn=process_input,
104
+ inputs=[query, file_upload, task_history],
105
+ outputs=[chatbot, task_history]
106
  )
107
+
108
+ gr.Markdown("""
109
+ 注意:此演示受 Qwen-VL 原始许可证的约束。我们强烈建议用户不要故意生成或允许他人故意生成有害内容,
110
+ 包括仇恨言论、暴力、色情、欺骗等。(注:本演示受Qwen-VL许可协议约束,强烈建议用户不要传播或允许他人传播以下内容,包括但不限于仇恨言论、暴力、色情、欺诈相关的有害信息 .)
111
+ Note: This demo is governed by the original license of Qwen-VL. We strongly advise users not to knowingly generate or allow others to knowingly generate harmful content,
112
+ including hate speech, violence, pornography, deception, etc. (Note: This demo is subject to the license agreement of Qwen-VL. We strongly advise users not to disseminate or allow others to disseminate the following content, including but not limited to hate speech, violence, pornography, and fraud-related harmful information.)
113
+ """)
114
+ demo.queue().launch()
115
 
116
+ if __name__ == "__main__":
117
+ demo.launch()