Spaces:
Sleeping
Sleeping
File size: 17,823 Bytes
9d212d1 931f63c 9d212d1 6c2841a 9d212d1 91b9049 9d212d1 0f72f6f 9d212d1 1c70ca6 9d212d1 1c70ca6 9d212d1 0f72f6f 9d212d1 931f63c 7c8c302 931f63c 7c8c302 8e66f46 931f63c 8e66f46 7c8c302 931f63c 7c8c302 931f63c 7c8c302 931f63c 7c8c302 931f63c 8e66f46 931f63c 9d212d1 9718bbe 931f63c 9d212d1 7937e2f 0f72f6f 77fe43b 0f72f6f 883178b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 |
import streamlit as st
import torch
import pytorch_lightning as pl
from transformers import AutoTokenizer, AutoModelForSequenceClassification, pipeline, T5Tokenizer, T5ForConditionalGeneration
import nltk
from transformers.models.roberta.modeling_roberta import *
from transformers import RobertaForQuestionAnswering
from nltk import word_tokenize
import json
import pandas as pd
# import re
# import base64
# Set the background image
# background_image = """
# <style>
# [data-testid="stAppViewContainer"] > .main {
# background-image: url("https://images.unsplash.com/photo-1542281286-9e0a16bb7366");
# background-size: 100vw 100vh; # This sets the size to cover 100% of the viewport width and height
# background-position: center;
# background-repeat: no-repeat;
# }
# </style>
# """
# st.markdown(background_image, unsafe_allow_html=True)
# def set_bg_hack(main_bg):
# '''
# A function to unpack an image from root folder and set as bg.
# Returns
# -------
# The background.
# '''
# # set bg name
# main_bg_ext = "png"
# st.markdown(
# f"""
# <style>
# .stApp {{
# background: url(data:image/{main_bg_ext};base64,{base64.b64encode(open(main_bg, "rb").read()).decode()});
# background-size: cover
# }}
# </style>
# """,
# unsafe_allow_html=True
# )
# set_bg_hack("Background.png")
# image_url = "logo1.png"
# # Hiển thị hình ảnh mà không có caption và điều chỉnh kích thước nhỏ lại
# st.image(image_url, width=100)
# Download punkt for nltk
print("===================================================================")
@st.cache_data
def download_nltk_punkt():
nltk.download('punkt_tab')
# Cache loading PhoBert model and tokenizer
@st.cache_resource
def load_phoBert():
model = AutoModelForSequenceClassification.from_pretrained('minhdang14902/Phobert_Law')
tokenizer = AutoTokenizer.from_pretrained('minhdang14902/Phobert_Law')
return model, tokenizer
# Call the cached functions
download_nltk_punkt()
phoBert_model, phoBert_tokenizer = load_phoBert()
# Initialize the pipeline with the loaded PhoBert model and tokenizer
chatbot_pipeline = pipeline("sentiment-analysis", model=phoBert_model, tokenizer=phoBert_tokenizer)
# Load spaCy Vietnamese model
# nlp = spacy.load('vi_core_news_lg')
# Load intents from json file
def load_json_file(filename):
with open(filename) as f:
file = json.load(f)
return file
filename = './Law_2907.json'
intents = load_json_file(filename)
@st.cache_data
def create_df():
df = pd.DataFrame({
'Pattern': [],
'Tag': []
})
return df
df = create_df()
@st.cache_data
def extract_json_info(json_file, df):
for intent in json_file['intents']:
for pattern in intent['patterns']:
sentence_tag = [pattern, intent['tag']]
df.loc[len(df.index)] = sentence_tag
return df
df = extract_json_info(intents, df)
df2 = df.copy()
labels = df2['Tag'].unique().tolist()
labels = [s.strip() for s in labels]
num_labels = len(labels)
id2label = {id: label for id, label in enumerate(labels)}
label2id = {label: id for id, label in enumerate(labels)}
# def tokenize_with_spacy(text):
# doc = nlp(text)
# tokens = [token.text for token in doc]
# tokenized_text = ' '.join(tokens)
# tokenized_text = re.sub(r'(?<!\s)([.,?])', r' \1', tokenized_text)
# tokenized_text = re.sub(r'([.,?])(?!\s)', r'\1 ', tokenized_text)
# return tokenized_text
# Load Roberta model and tokenizer
_CHECKPOINT_FOR_DOC = "roberta-base"
_CONFIG_FOR_DOC = "RobertaConfig"
_TOKENIZER_FOR_DOC = "RobertaTokenizer"
class MRCQuestionAnswering(RobertaPreTrainedModel):
config_class = RobertaConfig
def _reorder_cache(self, past, beam_idx):
pass
_keys_to_ignore_on_load_unexpected = [r"pooler"]
_keys_to_ignore_on_load_missing = [r"position_ids"]
def __init__(self, config):
super().__init__(config)
self.num_labels = config.num_labels
self.roberta = RobertaModel(config, add_pooling_layer=False)
self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels)
self.init_weights()
def forward(
self,
input_ids=None,
words_lengths=None,
start_idx=None,
end_idx=None,
attention_mask=None,
token_type_ids=None,
position_ids=None,
head_mask=None,
inputs_embeds=None,
start_positions=None,
end_positions=None,
span_answer_ids=None,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
):
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.roberta(
input_ids,
attention_mask=attention_mask,
token_type_ids=None, # Roberta doesn't use token_type_ids
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = outputs[0]
context_embedding = sequence_output
batch_size = input_ids.shape[0]
max_sub_word = input_ids.shape[1]
max_word = words_lengths.shape[1]
align_matrix = torch.zeros((batch_size, max_word, max_sub_word))
for i, sample_length in enumerate(words_lengths):
for j in range(len(sample_length)):
start_idx = torch.sum(sample_length[:j])
align_matrix[i][j][start_idx: start_idx + sample_length[j]] = 1 if sample_length[j] > 0 else 0
align_matrix = align_matrix.to(context_embedding.device)
context_embedding_align = torch.bmm(align_matrix, context_embedding)
logits = self.qa_outputs(context_embedding_align)
start_logits, end_logits = logits.split(1, dim=-1)
start_logits = start_logits.squeeze(-1).contiguous()
end_logits = end_logits.squeeze(-1).contiguous()
total_loss = None
if start_positions is not None and end_positions is not None:
if len(start_positions.size()) > 1:
start_positions = start_positions.squeeze(-1)
if len(end_positions.size()) > 1:
end_positions = end_positions.squeeze(-1)
ignored_index = start_logits.size(1)
start_positions = start_positions.clamp(0, ignored_index)
end_positions = end_positions.clamp(0, ignored_index)
loss_fct = CrossEntropyLoss(ignore_index=ignored_index)
start_loss = loss_fct(start_logits, start_positions)
end_loss = loss_fct(end_logits, end_positions)
total_loss = (start_loss + end_loss) / 2
if not return_dict:
output = (start_logits, end_logits) + outputs[2:]
return ((total_loss,) + output) if total_loss is not None else output
return QuestionAnsweringModelOutput(
loss=total_loss,
start_logits=start_logits,
end_logits=end_logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
# roberta_model_checkpoint = "minhdang14902/Roberta_edu"
# roberta_tokenizer = AutoTokenizer.from_pretrained(roberta_model_checkpoint)
# roberta_model = MRCQuestionAnswering.from_pretrained(roberta_model_checkpoint)
# Cache loading Roberta model and tokenizer
@st.cache_resource
def load_roberta_model():
model = MRCQuestionAnswering.from_pretrained('minhdang14902/Roberta_Law')
tokenizer = AutoTokenizer.from_pretrained('minhdang14902/Roberta_Law')
return model, tokenizer
roberta_model, roberta_tokenizer = load_roberta_model()
def chatRoberta(text):
label = label2id[chatbot_pipeline(text)[0]['label']]
response = intents['intents'][label]['responses']
print(response[0])
QA_input = {
'question': text,
'context': response[0]
}
# Tokenize input
encoded_input = tokenize_function(QA_input, roberta_tokenizer)
# Prepare batch samples
batch_samples = data_collator([encoded_input], roberta_tokenizer)
# Model prediction
roberta_model.eval()
with torch.no_grad():
inputs = {
'input_ids': batch_samples['input_ids'],
'attention_mask': batch_samples['attention_mask'],
'words_lengths': batch_samples['words_lengths'],
}
outputs = roberta_model(**inputs)
# Extract answer
result = extract_answer([encoded_input], outputs, roberta_tokenizer)
context = response[0]
return result, context
def tokenize_function(example, tokenizer):
question_word = word_tokenize(example["question"])
context_word = word_tokenize(example["context"])
question_sub_words_ids = [tokenizer.convert_tokens_to_ids(tokenizer.tokenize(w)) for w in question_word]
context_sub_words_ids = [tokenizer.convert_tokens_to_ids(tokenizer.tokenize(w)) for w in context_word]
valid = True
if len([j for i in question_sub_words_ids + context_sub_words_ids for j in i]) > tokenizer.model_max_length - 1:
valid = False
question_sub_words_ids = [[tokenizer.bos_token_id]] + question_sub_words_ids + [[tokenizer.eos_token_id]]
context_sub_words_ids = context_sub_words_ids + [[tokenizer.eos_token_id]]
input_ids = [j for i in question_sub_words_ids + context_sub_words_ids for j in i]
if len(input_ids) > tokenizer.model_max_length:
valid = False
words_lengths = [len(item) for item in question_sub_words_ids + context_sub_words_ids]
return {
"input_ids": input_ids,
"words_lengths": words_lengths,
"valid": valid
}
def data_collator(samples, tokenizer):
if len(samples) == 0:
return {}
def collate_tokens(values, pad_idx, eos_idx=None, left_pad=False, move_eos_to_beginning=False):
size = max(v.size(0) for v in values)
res = values[0].new(len(values), size).fill_(pad_idx)
def copy_tensor(src, dst):
assert dst.numel() == src.numel()
if move_eos_to_beginning:
assert src[-1] == eos_idx
dst[0] = eos_idx
dst[1:] = src[:-1]
else:
dst.copy_(src)
for i, v in enumerate(values):
copy_tensor(v, res[i][size - len(v):] if left_pad else res[i][:len(v)])
return res
input_ids = collate_tokens([torch.tensor(item['input_ids']) for item in samples], pad_idx=tokenizer.pad_token_id)
attention_mask = torch.zeros_like(input_ids)
for i in range(len(samples)):
attention_mask[i][:len(samples[i]['input_ids'])] = 1
words_lengths = collate_tokens([torch.tensor(item['words_lengths']) for item in samples], pad_idx=0)
batch_samples = {
'input_ids': input_ids,
'attention_mask': attention_mask,
'words_lengths': words_lengths,
}
return batch_samples
def extract_answer(inputs, outputs, tokenizer):
plain_result = []
for sample_input, start_logit, end_logit in zip(inputs, outputs.start_logits, outputs.end_logits):
sample_words_length = sample_input['words_lengths']
input_ids = sample_input['input_ids']
answer_start = sum(sample_words_length[:torch.argmax(start_logit)])
answer_end = sum(sample_words_length[:torch.argmax(end_logit) + 1])
if answer_start <= answer_end:
answer = tokenizer.convert_tokens_to_string(
tokenizer.convert_ids_to_tokens(input_ids[answer_start:answer_end]))
if answer == tokenizer.bos_token:
answer = ''
else:
answer = ''
score_start = torch.max(torch.softmax(start_logit, dim=-1)).cpu().detach().numpy().tolist()
score_end = torch.max(torch.softmax(end_logit, dim=-1)).cpu().detach().numpy().tolist()
plain_result.append({
"answer": answer,
"score_start": score_start,
"score_end": score_end
})
return plain_result
#T555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555
DEVICE = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
INPUT_MAX_LEN = 128 # Adjusted input length
OUTPUT_MAX_LEN = 256 # Adjusted output length
MODEL_NAME = "VietAI/vit5-base"
tokenizer = T5Tokenizer.from_pretrained(MODEL_NAME, model_max_length=INPUT_MAX_LEN)
class T5Model(pl.LightningModule):
def __init__(self):
super().__init__()
self.model = T5ForConditionalGeneration.from_pretrained(MODEL_NAME, return_dict=True)
def forward(self, input_ids, attention_mask, labels=None):
output = self.model(
input_ids=input_ids,
attention_mask=attention_mask,
labels=labels
)
return output.loss, output.logits
def training_step(self, batch, batch_idx):
input_ids = batch["input_ids"].to(DEVICE)
attention_mask = batch["attention_mask"].to(DEVICE)
labels = batch["target"].to(DEVICE)
loss, logits = self(input_ids, attention_mask, labels)
self.log("train_loss", loss, prog_bar=True, logger=True)
return {'loss': loss}
def validation_step(self, batch, batch_idx):
input_ids = batch["input_ids"].to(DEVICE)
attention_mask = batch["attention_mask"].to(DEVICE)
labels = batch["target"].to(DEVICE)
loss, logits = self(input_ids, attention_mask, labels)
self.log("val_loss", loss, prog_bar=True, logger=True)
return {'val_loss': loss}
def configure_optimizers(self):
return AdamW(self.parameters(), lr=0.0001)
train_model = T5Model.load_from_checkpoint('./data-law/law-model-v1.ckpt')
train_model.freeze()
def generate_question(question):
print("tokenizer")
inputs_encoding = tokenizer(
question,
add_special_tokens=True,
max_length=INPUT_MAX_LEN,
padding='max_length',
truncation='only_first',
return_attention_mask=True,
return_tensors="pt"
).to(DEVICE)
print("generate id")
generate_ids = train_model.model.generate(
input_ids=inputs_encoding["input_ids"],
attention_mask=inputs_encoding["attention_mask"],
max_length=INPUT_MAX_LEN,
num_beams=4,
num_return_sequences=1,
no_repeat_ngram_size=2,
early_stopping=True,
)
print("decode")
preds = [
tokenizer.decode(gen_id, skip_special_tokens=True, clean_up_tokenization_spaces=True)
for gen_id in generate_ids
]
response = " ".join(preds[0].split())
print('T5T5T5T5T5T5T5T5T5T5T5T5T5T5T5T5T5T5T5T5T5T5T5T5T5T5T5T5T5T5T5T5T5T5T5T5T5T5T5T5T5T5')
return response
def get_response(text):
# Thay thế hàm này bằng model của bạn để lấy câu trả lời từ bot
# st.subheader("The Answer is:")
# st.write(text)
answer, context = chatRoberta(text)
result = answer[0]['answer']
if result == "":
print("Khởi chạy T5")
return generate_question(text)
return result
# st.title("General Law Chatbot")
# # Khởi tạo lịch sử tin nhắn
# if "messages" not in st.session_state:
# st.session_state.messages = []
# # Hiển thị các tin nhắn từ lịch sử
# for message in st.session_state.messages:
# with st.chat_message(message["role"]):
# st.markdown(message["content"])
# # Nhận input từ người dùng
# if prompt := st.chat_input("What is up?"):
# # Thêm tin nhắn của người dùng vào lịch sử
# st.session_state.messages.append({"role": "user", "content": prompt})
# # Hiển thị tin nhắn của người dùng trong giao diện
# with st.chat_message("user"):
# st.markdown(prompt)
# # Lấy câu trả lời từ bot
# response = get_response(prompt)
# # Hiển thị câu trả lời của bot trong giao diện
# with st.chat_message("assistant"):
# st.markdown(response)
# # Thêm câu trả lời của bot vào lịch sử
# st.session_state.messages.append({"role": "assistant", "content": response})
# Đọc file CSV và tạo dictionary từ file
@st.cache_data
def qa_dict():
df = pd.read_csv("./data-law/Data_law_2807.csv") # Đường dẫn đến file CSV của bạn
qa_dict = dict(zip(df['question'], df['answer']))
return qa_dict
qa_dict = qa_dict()
st.title("General Law Chatbot")
# Khởi tạo lịch sử tin nhắn
if "messages" not in st.session_state:
st.session_state.messages = []
# Hiển thị các tin nhắn từ lịch sử
for message in st.session_state.messages:
with st.chat_message(message["role"]):
st.markdown(message["content"])
# Nhận input từ người dùng
if prompt := st.chat_input("What is up?"):
# Thêm tin nhắn của người dùng vào lịch sử
st.session_state.messages.append({"role": "user", "content": prompt})
# Hiển thị tin nhắn của người dùng trong giao diện
with st.chat_message("user"):
st.markdown(prompt)
# Kiểm tra xem prompt có trong dictionary không
if prompt in qa_dict:
response = qa_dict[prompt]
else:
response = get_response(prompt)
# Hiển thị câu trả lời của bot trong giao diện
with st.chat_message("assistant"):
st.markdown(response)
# Thêm câu trả lời của bot vào lịch sử
st.session_state.messages.append({"role": "assistant", "content": response})
|