Spaces:
Sleeping
Sleeping
minhdang14902
commited on
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,432 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import torch
|
3 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification, pipeline
|
4 |
+
import nltk
|
5 |
+
from transformers.models.roberta.modeling_roberta import *
|
6 |
+
from transformers import RobertaForQuestionAnswering
|
7 |
+
from nltk import word_tokenize
|
8 |
+
import json
|
9 |
+
import pandas as pd
|
10 |
+
# import re
|
11 |
+
import base64
|
12 |
+
# Set the background image
|
13 |
+
# background_image = """
|
14 |
+
# <style>
|
15 |
+
# [data-testid="stAppViewContainer"] > .main {
|
16 |
+
# background-image: url("https://images.unsplash.com/photo-1542281286-9e0a16bb7366");
|
17 |
+
# background-size: 100vw 100vh; # This sets the size to cover 100% of the viewport width and height
|
18 |
+
# background-position: center;
|
19 |
+
# background-repeat: no-repeat;
|
20 |
+
# }
|
21 |
+
# </style>
|
22 |
+
# """
|
23 |
+
# st.markdown(background_image, unsafe_allow_html=True)
|
24 |
+
|
25 |
+
# def set_bg_hack(main_bg):
|
26 |
+
# '''
|
27 |
+
# A function to unpack an image from root folder and set as bg.
|
28 |
+
|
29 |
+
# Returns
|
30 |
+
# -------
|
31 |
+
# The background.
|
32 |
+
# '''
|
33 |
+
# # set bg name
|
34 |
+
# main_bg_ext = "png"
|
35 |
+
|
36 |
+
# st.markdown(
|
37 |
+
# f"""
|
38 |
+
# <style>
|
39 |
+
# .stApp {{
|
40 |
+
# background: url(data:image/{main_bg_ext};base64,{base64.b64encode(open(main_bg, "rb").read()).decode()});
|
41 |
+
# background-size: cover
|
42 |
+
# }}
|
43 |
+
# </style>
|
44 |
+
# """,
|
45 |
+
# unsafe_allow_html=True
|
46 |
+
# )
|
47 |
+
# set_bg_hack("Background.png")
|
48 |
+
|
49 |
+
# image_url = "logo1.png"
|
50 |
+
|
51 |
+
# # Hiển thị hình ảnh mà không có caption và điều chỉnh kích thước nhỏ lại
|
52 |
+
# st.image(image_url, width=100)
|
53 |
+
|
54 |
+
# Download punkt for nltk
|
55 |
+
print("===================================================================")
|
56 |
+
@st.cache_data
|
57 |
+
def download_nltk_punkt():
|
58 |
+
nltk.download('punkt_tab')
|
59 |
+
|
60 |
+
# Cache loading PhoBert model and tokenizer
|
61 |
+
@st.cache_data
|
62 |
+
def load_phoBert():
|
63 |
+
model = AutoModelForSequenceClassification.from_pretrained('minhdang14902/Phobert_Law')
|
64 |
+
tokenizer = AutoTokenizer.from_pretrained('minhdang14902/Phobert_Law')
|
65 |
+
return model, tokenizer
|
66 |
+
|
67 |
+
|
68 |
+
|
69 |
+
# Call the cached functions
|
70 |
+
download_nltk_punkt()
|
71 |
+
phoBert_model, phoBert_tokenizer = load_phoBert()
|
72 |
+
|
73 |
+
# Initialize the pipeline with the loaded PhoBert model and tokenizer
|
74 |
+
chatbot_pipeline = pipeline("sentiment-analysis", model=phoBert_model, tokenizer=phoBert_tokenizer)
|
75 |
+
|
76 |
+
# Load spaCy Vietnamese model
|
77 |
+
# nlp = spacy.load('vi_core_news_lg')
|
78 |
+
|
79 |
+
# Load intents from json file
|
80 |
+
def load_json_file(filename):
|
81 |
+
with open(filename) as f:
|
82 |
+
file = json.load(f)
|
83 |
+
return file
|
84 |
+
|
85 |
+
filename = './Law_2907.json'
|
86 |
+
intents = load_json_file(filename)
|
87 |
+
|
88 |
+
def create_df():
|
89 |
+
df = pd.DataFrame({
|
90 |
+
'Pattern': [],
|
91 |
+
'Tag': []
|
92 |
+
})
|
93 |
+
return df
|
94 |
+
|
95 |
+
df = create_df()
|
96 |
+
|
97 |
+
def extract_json_info(json_file, df):
|
98 |
+
for intent in json_file['intents']:
|
99 |
+
for pattern in intent['patterns']:
|
100 |
+
sentence_tag = [pattern, intent['tag']]
|
101 |
+
df.loc[len(df.index)] = sentence_tag
|
102 |
+
return df
|
103 |
+
|
104 |
+
df = extract_json_info(intents, df)
|
105 |
+
df2 = df.copy()
|
106 |
+
|
107 |
+
labels = df2['Tag'].unique().tolist()
|
108 |
+
labels = [s.strip() for s in labels]
|
109 |
+
num_labels = len(labels)
|
110 |
+
id2label = {id: label for id, label in enumerate(labels)}
|
111 |
+
label2id = {label: id for id, label in enumerate(labels)}
|
112 |
+
|
113 |
+
# def tokenize_with_spacy(text):
|
114 |
+
# doc = nlp(text)
|
115 |
+
# tokens = [token.text for token in doc]
|
116 |
+
# tokenized_text = ' '.join(tokens)
|
117 |
+
# tokenized_text = re.sub(r'(?<!\s)([.,?])', r' \1', tokenized_text)
|
118 |
+
# tokenized_text = re.sub(r'([.,?])(?!\s)', r'\1 ', tokenized_text)
|
119 |
+
# return tokenized_text
|
120 |
+
|
121 |
+
# Load Roberta model and tokenizer
|
122 |
+
|
123 |
+
_CHECKPOINT_FOR_DOC = "roberta-base"
|
124 |
+
_CONFIG_FOR_DOC = "RobertaConfig"
|
125 |
+
_TOKENIZER_FOR_DOC = "RobertaTokenizer"
|
126 |
+
|
127 |
+
|
128 |
+
class MRCQuestionAnswering(RobertaPreTrainedModel):
|
129 |
+
config_class = RobertaConfig
|
130 |
+
|
131 |
+
def _reorder_cache(self, past, beam_idx):
|
132 |
+
pass
|
133 |
+
|
134 |
+
_keys_to_ignore_on_load_unexpected = [r"pooler"]
|
135 |
+
_keys_to_ignore_on_load_missing = [r"position_ids"]
|
136 |
+
|
137 |
+
def __init__(self, config):
|
138 |
+
super().__init__(config)
|
139 |
+
self.num_labels = config.num_labels
|
140 |
+
|
141 |
+
self.roberta = RobertaModel(config, add_pooling_layer=False)
|
142 |
+
self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels)
|
143 |
+
|
144 |
+
self.init_weights()
|
145 |
+
|
146 |
+
def forward(
|
147 |
+
self,
|
148 |
+
input_ids=None,
|
149 |
+
words_lengths=None,
|
150 |
+
start_idx=None,
|
151 |
+
end_idx=None,
|
152 |
+
attention_mask=None,
|
153 |
+
token_type_ids=None,
|
154 |
+
position_ids=None,
|
155 |
+
head_mask=None,
|
156 |
+
inputs_embeds=None,
|
157 |
+
start_positions=None,
|
158 |
+
end_positions=None,
|
159 |
+
span_answer_ids=None,
|
160 |
+
output_attentions=None,
|
161 |
+
output_hidden_states=None,
|
162 |
+
return_dict=None,
|
163 |
+
):
|
164 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
165 |
+
|
166 |
+
outputs = self.roberta(
|
167 |
+
input_ids,
|
168 |
+
attention_mask=attention_mask,
|
169 |
+
token_type_ids=None, # Roberta doesn't use token_type_ids
|
170 |
+
position_ids=position_ids,
|
171 |
+
head_mask=head_mask,
|
172 |
+
inputs_embeds=inputs_embeds,
|
173 |
+
output_attentions=output_attentions,
|
174 |
+
output_hidden_states=output_hidden_states,
|
175 |
+
return_dict=return_dict,
|
176 |
+
)
|
177 |
+
|
178 |
+
sequence_output = outputs[0]
|
179 |
+
|
180 |
+
context_embedding = sequence_output
|
181 |
+
|
182 |
+
batch_size = input_ids.shape[0]
|
183 |
+
max_sub_word = input_ids.shape[1]
|
184 |
+
max_word = words_lengths.shape[1]
|
185 |
+
align_matrix = torch.zeros((batch_size, max_word, max_sub_word))
|
186 |
+
|
187 |
+
for i, sample_length in enumerate(words_lengths):
|
188 |
+
for j in range(len(sample_length)):
|
189 |
+
start_idx = torch.sum(sample_length[:j])
|
190 |
+
align_matrix[i][j][start_idx: start_idx + sample_length[j]] = 1 if sample_length[j] > 0 else 0
|
191 |
+
|
192 |
+
align_matrix = align_matrix.to(context_embedding.device)
|
193 |
+
context_embedding_align = torch.bmm(align_matrix, context_embedding)
|
194 |
+
|
195 |
+
logits = self.qa_outputs(context_embedding_align)
|
196 |
+
start_logits, end_logits = logits.split(1, dim=-1)
|
197 |
+
start_logits = start_logits.squeeze(-1).contiguous()
|
198 |
+
end_logits = end_logits.squeeze(-1).contiguous()
|
199 |
+
|
200 |
+
total_loss = None
|
201 |
+
if start_positions is not None and end_positions is not None:
|
202 |
+
if len(start_positions.size()) > 1:
|
203 |
+
start_positions = start_positions.squeeze(-1)
|
204 |
+
if len(end_positions.size()) > 1:
|
205 |
+
end_positions = end_positions.squeeze(-1)
|
206 |
+
ignored_index = start_logits.size(1)
|
207 |
+
start_positions = start_positions.clamp(0, ignored_index)
|
208 |
+
end_positions = end_positions.clamp(0, ignored_index)
|
209 |
+
|
210 |
+
loss_fct = CrossEntropyLoss(ignore_index=ignored_index)
|
211 |
+
start_loss = loss_fct(start_logits, start_positions)
|
212 |
+
end_loss = loss_fct(end_logits, end_positions)
|
213 |
+
total_loss = (start_loss + end_loss) / 2
|
214 |
+
|
215 |
+
if not return_dict:
|
216 |
+
output = (start_logits, end_logits) + outputs[2:]
|
217 |
+
return ((total_loss,) + output) if total_loss is not None else output
|
218 |
+
|
219 |
+
return QuestionAnsweringModelOutput(
|
220 |
+
loss=total_loss,
|
221 |
+
start_logits=start_logits,
|
222 |
+
end_logits=end_logits,
|
223 |
+
hidden_states=outputs.hidden_states,
|
224 |
+
attentions=outputs.attentions,
|
225 |
+
)
|
226 |
+
|
227 |
+
# roberta_model_checkpoint = "minhdang14902/Roberta_edu"
|
228 |
+
# roberta_tokenizer = AutoTokenizer.from_pretrained(roberta_model_checkpoint)
|
229 |
+
# roberta_model = MRCQuestionAnswering.from_pretrained(roberta_model_checkpoint)
|
230 |
+
|
231 |
+
# Cache loading Roberta model and tokenizer
|
232 |
+
@st.cache_data
|
233 |
+
def load_roberta_model():
|
234 |
+
model = MRCQuestionAnswering.from_pretrained('minhdang14902/Roberta_Law')
|
235 |
+
tokenizer = AutoTokenizer.from_pretrained('minhdang14902/Roberta_Law')
|
236 |
+
return model, tokenizer
|
237 |
+
|
238 |
+
roberta_model, roberta_tokenizer = load_roberta_model()
|
239 |
+
|
240 |
+
|
241 |
+
def chatRoberta(text):
|
242 |
+
label = label2id[chatbot_pipeline(text)[0]['label']]
|
243 |
+
response = intents['intents'][label]['responses']
|
244 |
+
print(response[0])
|
245 |
+
|
246 |
+
QA_input = {
|
247 |
+
'question': text,
|
248 |
+
'context': response[0]
|
249 |
+
}
|
250 |
+
|
251 |
+
# Tokenize input
|
252 |
+
encoded_input = tokenize_function(QA_input, roberta_tokenizer)
|
253 |
+
|
254 |
+
# Prepare batch samples
|
255 |
+
batch_samples = data_collator([encoded_input], roberta_tokenizer)
|
256 |
+
|
257 |
+
# Model prediction
|
258 |
+
roberta_model.eval()
|
259 |
+
with torch.no_grad():
|
260 |
+
inputs = {
|
261 |
+
'input_ids': batch_samples['input_ids'],
|
262 |
+
'attention_mask': batch_samples['attention_mask'],
|
263 |
+
'words_lengths': batch_samples['words_lengths'],
|
264 |
+
}
|
265 |
+
outputs = roberta_model(**inputs)
|
266 |
+
|
267 |
+
# Extract answer
|
268 |
+
result = extract_answer([encoded_input], outputs, roberta_tokenizer)
|
269 |
+
context = response[0]
|
270 |
+
return result, context
|
271 |
+
|
272 |
+
def tokenize_function(example, tokenizer):
|
273 |
+
question_word = word_tokenize(example["question"])
|
274 |
+
context_word = word_tokenize(example["context"])
|
275 |
+
|
276 |
+
question_sub_words_ids = [tokenizer.convert_tokens_to_ids(tokenizer.tokenize(w)) for w in question_word]
|
277 |
+
context_sub_words_ids = [tokenizer.convert_tokens_to_ids(tokenizer.tokenize(w)) for w in context_word]
|
278 |
+
valid = True
|
279 |
+
if len([j for i in question_sub_words_ids + context_sub_words_ids for j in i]) > tokenizer.model_max_length - 1:
|
280 |
+
valid = False
|
281 |
+
|
282 |
+
question_sub_words_ids = [[tokenizer.bos_token_id]] + question_sub_words_ids + [[tokenizer.eos_token_id]]
|
283 |
+
context_sub_words_ids = context_sub_words_ids + [[tokenizer.eos_token_id]]
|
284 |
+
|
285 |
+
input_ids = [j for i in question_sub_words_ids + context_sub_words_ids for j in i]
|
286 |
+
if len(input_ids) > tokenizer.model_max_length:
|
287 |
+
valid = False
|
288 |
+
|
289 |
+
words_lengths = [len(item) for item in question_sub_words_ids + context_sub_words_ids]
|
290 |
+
|
291 |
+
return {
|
292 |
+
"input_ids": input_ids,
|
293 |
+
"words_lengths": words_lengths,
|
294 |
+
"valid": valid
|
295 |
+
}
|
296 |
+
|
297 |
+
def data_collator(samples, tokenizer):
|
298 |
+
if len(samples) == 0:
|
299 |
+
return {}
|
300 |
+
|
301 |
+
def collate_tokens(values, pad_idx, eos_idx=None, left_pad=False, move_eos_to_beginning=False):
|
302 |
+
size = max(v.size(0) for v in values)
|
303 |
+
res = values[0].new(len(values), size).fill_(pad_idx)
|
304 |
+
|
305 |
+
def copy_tensor(src, dst):
|
306 |
+
assert dst.numel() == src.numel()
|
307 |
+
if move_eos_to_beginning:
|
308 |
+
assert src[-1] == eos_idx
|
309 |
+
dst[0] = eos_idx
|
310 |
+
dst[1:] = src[:-1]
|
311 |
+
else:
|
312 |
+
dst.copy_(src)
|
313 |
+
|
314 |
+
for i, v in enumerate(values):
|
315 |
+
copy_tensor(v, res[i][size - len(v):] if left_pad else res[i][:len(v)])
|
316 |
+
return res
|
317 |
+
|
318 |
+
input_ids = collate_tokens([torch.tensor(item['input_ids']) for item in samples], pad_idx=tokenizer.pad_token_id)
|
319 |
+
attention_mask = torch.zeros_like(input_ids)
|
320 |
+
for i in range(len(samples)):
|
321 |
+
attention_mask[i][:len(samples[i]['input_ids'])] = 1
|
322 |
+
words_lengths = collate_tokens([torch.tensor(item['words_lengths']) for item in samples], pad_idx=0)
|
323 |
+
|
324 |
+
batch_samples = {
|
325 |
+
'input_ids': input_ids,
|
326 |
+
'attention_mask': attention_mask,
|
327 |
+
'words_lengths': words_lengths,
|
328 |
+
}
|
329 |
+
|
330 |
+
return batch_samples
|
331 |
+
|
332 |
+
def extract_answer(inputs, outputs, tokenizer):
|
333 |
+
plain_result = []
|
334 |
+
for sample_input, start_logit, end_logit in zip(inputs, outputs.start_logits, outputs.end_logits):
|
335 |
+
sample_words_length = sample_input['words_lengths']
|
336 |
+
input_ids = sample_input['input_ids']
|
337 |
+
answer_start = sum(sample_words_length[:torch.argmax(start_logit)])
|
338 |
+
answer_end = sum(sample_words_length[:torch.argmax(end_logit) + 1])
|
339 |
+
|
340 |
+
if answer_start <= answer_end:
|
341 |
+
answer = tokenizer.convert_tokens_to_string(
|
342 |
+
tokenizer.convert_ids_to_tokens(input_ids[answer_start:answer_end]))
|
343 |
+
if answer == tokenizer.bos_token:
|
344 |
+
answer = ''
|
345 |
+
else:
|
346 |
+
answer = ''
|
347 |
+
|
348 |
+
score_start = torch.max(torch.softmax(start_logit, dim=-1)).cpu().detach().numpy().tolist()
|
349 |
+
score_end = torch.max(torch.softmax(end_logit, dim=-1)).cpu().detach().numpy().tolist()
|
350 |
+
plain_result.append({
|
351 |
+
"answer": answer,
|
352 |
+
"score_start": score_start,
|
353 |
+
"score_end": score_end
|
354 |
+
})
|
355 |
+
return plain_result
|
356 |
+
|
357 |
+
# st.title("Chatbot Roberta")
|
358 |
+
# st.write("Hi! Tôi là trợ lý của bạn trong việc trả lời các câu hỏi.")
|
359 |
+
# text = st.text_input("User: ", key="input")
|
360 |
+
|
361 |
+
# if 'chat_history' not in st.session_state:
|
362 |
+
# st.session_state['chat_history'] = []
|
363 |
+
|
364 |
+
|
365 |
+
# def get_response(text):
|
366 |
+
# st.subheader("The Answer is:")
|
367 |
+
# st.write(text)
|
368 |
+
# answer, context = chatRoberta(text)
|
369 |
+
# result = answer[0]['answer']
|
370 |
+
# if result == "":
|
371 |
+
# return "Xin lỗi, tôi không thể tìm được đáp án phù hợp cho câu hỏi này ... Hãy thử trả lời bằng câu hỏi khác!"
|
372 |
+
# return result
|
373 |
+
|
374 |
+
# if st.button("Chat!"):
|
375 |
+
# st.session_state['chat_history'].append(("User", text))
|
376 |
+
|
377 |
+
# response = get_response(text)
|
378 |
+
|
379 |
+
# st.subheader("The Response is:")
|
380 |
+
# message = st.empty()
|
381 |
+
# result = ""
|
382 |
+
# for chunk in response:
|
383 |
+
# result += chunk
|
384 |
+
# message.markdown(result + "❚ ")
|
385 |
+
# message.markdown(result)
|
386 |
+
# st.session_state['chat_history'].append(("Bot", result))
|
387 |
+
|
388 |
+
# for i, (sender, message) in enumerate(st.session_state['chat_history']):
|
389 |
+
# if sender == "User":
|
390 |
+
# st.text_area(f"User:", value=message, height=100, max_chars=None, key=f"user_{i}")
|
391 |
+
# else:
|
392 |
+
# st.text_area(f"Bot:", value=message, height=100, max_chars=None, key=f"bot_{i}")
|
393 |
+
|
394 |
+
def get_response(text):
|
395 |
+
# Thay thế hàm này bằng model của bạn để lấy câu trả lời từ bot
|
396 |
+
# st.subheader("The Answer is:")
|
397 |
+
# st.write(text)
|
398 |
+
answer, context = chatRoberta(text)
|
399 |
+
result = answer[0]['answer']
|
400 |
+
if result == "":
|
401 |
+
return "Xin lỗi, tôi không thể tìm được đáp án phù hợp cho câu hỏi này ... Hãy thử trả lời bằng câu hỏi khác!"
|
402 |
+
return result
|
403 |
+
|
404 |
+
st.title("General Law Chatbot")
|
405 |
+
|
406 |
+
# Khởi tạo lịch sử tin nhắn
|
407 |
+
if "messages" not in st.session_state:
|
408 |
+
st.session_state.messages = []
|
409 |
+
|
410 |
+
# Hiển thị các tin nhắn từ lịch sử
|
411 |
+
for message in st.session_state.messages:
|
412 |
+
with st.chat_message(message["role"]):
|
413 |
+
st.markdown(message["content"])
|
414 |
+
|
415 |
+
# Nhận input từ người dùng
|
416 |
+
if prompt := st.chat_input("What is up?"):
|
417 |
+
# Thêm tin nhắn của người dùng vào lịch sử
|
418 |
+
st.session_state.messages.append({"role": "user", "content": prompt})
|
419 |
+
|
420 |
+
# Hiển thị tin nhắn của người dùng trong giao diện
|
421 |
+
with st.chat_message("user"):
|
422 |
+
st.markdown(prompt)
|
423 |
+
|
424 |
+
# Lấy câu trả lời từ bot
|
425 |
+
response = get_response(prompt)
|
426 |
+
|
427 |
+
# Hiển thị câu trả lời của bot trong giao diện
|
428 |
+
with st.chat_message("assistant"):
|
429 |
+
st.markdown(response)
|
430 |
+
|
431 |
+
# Thêm câu trả lời của bot vào lịch sử
|
432 |
+
st.session_state.messages.append({"role": "assistant", "content": response})
|