|
import glob |
|
import logging |
|
import os |
|
from pathlib import Path |
|
|
|
import cv2 |
|
import numpy as np |
|
import onnxruntime as rt |
|
import torch |
|
from PIL import Image |
|
from rembg import new_session, remove |
|
from tqdm.rich import tqdm |
|
|
|
logger = logging.getLogger(__name__) |
|
|
|
def animseg_create_fg(frame_dir, output_dir, output_mask_dir, masked_area_list, |
|
bg_color=(0,255,0), |
|
mask_padding=0, |
|
): |
|
|
|
frame_list = sorted(glob.glob( os.path.join(frame_dir, "[0-9]*.png"), recursive=False)) |
|
|
|
if mask_padding != 0: |
|
kernel = np.ones((abs(mask_padding),abs(mask_padding)),np.uint8) |
|
kernel2 = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (3, 3)) |
|
|
|
|
|
providers = ['CUDAExecutionProvider', 'CPUExecutionProvider'] |
|
rmbg_model = rt.InferenceSession("data/models/anime_seg/isnetis.onnx", providers=providers) |
|
|
|
def get_mask(img, s=1024): |
|
img = (img / 255).astype(np.float32) |
|
h, w = h0, w0 = img.shape[:-1] |
|
h, w = (s, int(s * w / h)) if h > w else (int(s * h / w), s) |
|
ph, pw = s - h, s - w |
|
img_input = np.zeros([s, s, 3], dtype=np.float32) |
|
img_input[ph // 2:ph // 2 + h, pw // 2:pw // 2 + w] = cv2.resize(img, (w, h)) |
|
img_input = np.transpose(img_input, (2, 0, 1)) |
|
img_input = img_input[np.newaxis, :] |
|
mask = rmbg_model.run(None, {'img': img_input})[0][0] |
|
mask = np.transpose(mask, (1, 2, 0)) |
|
mask = mask[ph // 2:ph // 2 + h, pw // 2:pw // 2 + w] |
|
mask = cv2.resize(mask, (w0, h0)) |
|
mask = (mask * 255).astype(np.uint8) |
|
return mask |
|
|
|
|
|
for i, frame in tqdm(enumerate(frame_list),total=len(frame_list), desc=f"creating mask"): |
|
frame = Path(frame) |
|
file_name = frame.name |
|
|
|
cur_frame_no = int(frame.stem) |
|
|
|
img = Image.open(frame) |
|
img_array = np.asarray(img) |
|
|
|
mask_array = get_mask(img_array) |
|
|
|
|
|
|
|
if mask_padding < 0: |
|
mask_array = cv2.erode(mask_array.astype(np.uint8),kernel,iterations = 1) |
|
elif mask_padding > 0: |
|
mask_array = cv2.dilate(mask_array.astype(np.uint8),kernel,iterations = 1) |
|
|
|
mask_array = cv2.morphologyEx(mask_array, cv2.MORPH_OPEN, kernel2) |
|
mask_array = cv2.GaussianBlur(mask_array, (7, 7), sigmaX=3, sigmaY=3, borderType=cv2.BORDER_DEFAULT) |
|
|
|
if masked_area_list[cur_frame_no] is not None: |
|
masked_area_list[cur_frame_no] = np.where(masked_area_list[cur_frame_no] > mask_array[None,...], masked_area_list[cur_frame_no], mask_array[None,...]) |
|
else: |
|
masked_area_list[cur_frame_no] = mask_array[None,...] |
|
|
|
if output_mask_dir: |
|
Image.fromarray(mask_array).save( output_mask_dir / file_name ) |
|
|
|
img_array = np.asarray(img).copy() |
|
if bg_color is not None: |
|
img_array[mask_array == 0] = bg_color |
|
|
|
img = Image.fromarray(img_array) |
|
|
|
img.save( output_dir / file_name ) |
|
|
|
return masked_area_list |
|
|
|
|
|
|
|
|