File size: 3,034 Bytes
d0ffe9c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 |
import glob
import logging
import os
from pathlib import Path
import cv2
import numpy as np
import onnxruntime as rt
import torch
from PIL import Image
from rembg import new_session, remove
from tqdm.rich import tqdm
logger = logging.getLogger(__name__)
def animseg_create_fg(frame_dir, output_dir, output_mask_dir, masked_area_list,
bg_color=(0,255,0),
mask_padding=0,
):
frame_list = sorted(glob.glob( os.path.join(frame_dir, "[0-9]*.png"), recursive=False))
if mask_padding != 0:
kernel = np.ones((abs(mask_padding),abs(mask_padding)),np.uint8)
kernel2 = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (3, 3))
providers = ['CUDAExecutionProvider', 'CPUExecutionProvider']
rmbg_model = rt.InferenceSession("data/models/anime_seg/isnetis.onnx", providers=providers)
def get_mask(img, s=1024):
img = (img / 255).astype(np.float32)
h, w = h0, w0 = img.shape[:-1]
h, w = (s, int(s * w / h)) if h > w else (int(s * h / w), s)
ph, pw = s - h, s - w
img_input = np.zeros([s, s, 3], dtype=np.float32)
img_input[ph // 2:ph // 2 + h, pw // 2:pw // 2 + w] = cv2.resize(img, (w, h))
img_input = np.transpose(img_input, (2, 0, 1))
img_input = img_input[np.newaxis, :]
mask = rmbg_model.run(None, {'img': img_input})[0][0]
mask = np.transpose(mask, (1, 2, 0))
mask = mask[ph // 2:ph // 2 + h, pw // 2:pw // 2 + w]
mask = cv2.resize(mask, (w0, h0))
mask = (mask * 255).astype(np.uint8)
return mask
for i, frame in tqdm(enumerate(frame_list),total=len(frame_list), desc=f"creating mask"):
frame = Path(frame)
file_name = frame.name
cur_frame_no = int(frame.stem)
img = Image.open(frame)
img_array = np.asarray(img)
mask_array = get_mask(img_array)
# Image.fromarray(mask_array).save( output_dir / Path("raw_" + file_name))
if mask_padding < 0:
mask_array = cv2.erode(mask_array.astype(np.uint8),kernel,iterations = 1)
elif mask_padding > 0:
mask_array = cv2.dilate(mask_array.astype(np.uint8),kernel,iterations = 1)
mask_array = cv2.morphologyEx(mask_array, cv2.MORPH_OPEN, kernel2)
mask_array = cv2.GaussianBlur(mask_array, (7, 7), sigmaX=3, sigmaY=3, borderType=cv2.BORDER_DEFAULT)
if masked_area_list[cur_frame_no] is not None:
masked_area_list[cur_frame_no] = np.where(masked_area_list[cur_frame_no] > mask_array[None,...], masked_area_list[cur_frame_no], mask_array[None,...])
else:
masked_area_list[cur_frame_no] = mask_array[None,...]
if output_mask_dir:
Image.fromarray(mask_array).save( output_mask_dir / file_name )
img_array = np.asarray(img).copy()
if bg_color is not None:
img_array[mask_array == 0] = bg_color
img = Image.fromarray(img_array)
img.save( output_dir / file_name )
return masked_area_list
|