Spaces:
Runtime error
Runtime error
File size: 1,448 Bytes
2e35d02 7b88933 a54b6d7 0b472d5 9422011 2e35d02 3b3366c 9422011 96c7370 9422011 5852718 3b3366c 9226479 b370699 b9908bd 5852718 8a9e88a b9908bd 0cce770 c4da767 b5c614a f9191fe b5c614a b44551d 8a9e88a 5852718 c4da767 e189ca5 5852718 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 |
import gradio as gr
from transformers import pipeline
model_id = "Teapack1/model_KWS" # update with your model id
pipe = pipeline("audio-classification", model=model_id)
title = "Keyword Spotting Wav2Vec2"
description = "Gradio demo for finetuned Wav2Vec2 model on a custom dataset to perform keyword spotting task. Classes are scene 1, scene 2, scene 3, ambient, light on."
demo = gr.Blocks()
def classify_audio(audio):
preds = pipe(audio)
outputs = {}
for p in preds:
outputs[p["label"]] = p["score"]
return outputs
mic_classify = gr.Interface(
fn=classify_audio,
inputs=gr.inputs.Audio(source="microphone", type="filepath", label="Record your audio"),
outputs=gr.outputs.Label(),
title=title,
theme="huggingface",
description=description,
examples=[
["./scene3_329.wav",],
["./scene1_200.wav"],
["./light_422.wav"],
["./ambient_476.wav"],
],
cache_examples=True,
)
file_classify = gr.Interface(
fn=classify_audio,
title=title,
description=description,
inputs=gr.inputs.Audio(source="upload", optional=True, label="Audio file", type="filepath"),
theme="huggingface",
outputs=gr.outputs.Label(),
)
# iface.test_examples(example_samples)
with demo:
gr.TabbedInterface(
[mic_classify, file_classify],
["Classify Microphone", "Classify Audio File"],
)
demo.launch(debug=True, share=True) |