Teapack1 commited on
Commit
2e35d02
1 Parent(s): 3af03e2

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +10 -32
app.py CHANGED
@@ -1,45 +1,23 @@
1
  from transformers import pipeline
 
2
 
3
  model_id = "Teapack1/model_KWS" # update with your model id
4
- pipe = pipeline("automatic-speech-recognition", model=model_id)
5
 
6
- import gradio as gr
7
 
8
  title = "Keyword Spotting Wav2Vec2"
9
  description = "Gradio demo for finetuned Wav2Vec2 model on a custom dataset to perform keyword spotting task. Classes are scene 1, scene 2, scene 3, yes, no and stop."
10
 
11
 
12
- def transcribe_speech(filepath):
13
- output = pipe(
14
- filepath,
15
- max_new_tokens=256,
16
- generate_kwargs={
17
- "task": "transcribe",
18
- "language": "sinhalese",
19
- }, # update with the language you've fine-tuned on
20
- chunk_length_s=30,
21
- batch_size=8,
22
- )
23
- return output["text"]
24
-
25
- demo = gr.Blocks()
26
 
27
- mic_transcribe = gr.Interface(
28
- fn=transcribe_speech,
29
- inputs=gr.Audio(sources="microphone", type="filepath"),
30
- outputs=gr.outputs.Textbox(),
31
- )
32
 
33
- file_transcribe = gr.Interface(
34
- fn=transcribe_speech,
35
- inputs=gr.Audio(sources="upload", type="filepath"),
36
- outputs=gr.outputs.Textbox(),
37
  )
38
-
39
- with demo:
40
- gr.TabbedInterface(
41
- [mic_transcribe, file_transcribe],
42
- ["Transcribe Microphone", "Transcribe Audio File"],
43
- )
44
-
45
  demo.launch(debug=True)
 
1
  from transformers import pipeline
2
+ import gradio as gr
3
 
4
  model_id = "Teapack1/model_KWS" # update with your model id
5
+ pipe = pipeline("audio-classification", model=model_id)
6
 
 
7
 
8
  title = "Keyword Spotting Wav2Vec2"
9
  description = "Gradio demo for finetuned Wav2Vec2 model on a custom dataset to perform keyword spotting task. Classes are scene 1, scene 2, scene 3, yes, no and stop."
10
 
11
 
12
+ def classify_audio(filepath):
13
+ preds = pipe(filepath)
14
+ outputs = {}
15
+ for p in preds:
16
+ outputs[p["label"]] = p["score"]
17
+ return outputs
 
 
 
 
 
 
 
 
18
 
 
 
 
 
 
19
 
20
+ demo = gr.Interface(
21
+ fn=classify_audio, inputs=gr.Audio(type="filepath"), outputs=gr.outputs.Label()
 
 
22
  )
 
 
 
 
 
 
 
23
  demo.launch(debug=True)