Spaces:
Running
on
Zero
Running
on
Zero
import spaces | |
import torch | |
import gradio as gr | |
import yt_dlp as youtube_dl | |
from transformers import pipeline | |
from transformers.pipelines.audio_utils import ffmpeg_read | |
import tempfile | |
import os | |
MODEL_NAME = "TalTechNLP/whisper-large-v3-turbo-et-subs" | |
BATCH_SIZE = 8 | |
FILE_LIMIT_MB = 1000 | |
YT_LENGTH_LIMIT_S = 3600 # limit to 1 hour YouTube files | |
device = 0 if torch.cuda.is_available() else "cpu" | |
pipe = pipeline( | |
task="automatic-speech-recognition", | |
model=MODEL_NAME, | |
chunk_length_s=30, | |
device=device, | |
) | |
def convert_to_vtt(whisper_output): | |
""" | |
Convert Whisper ASR output to VTT subtitle format. | |
Args: | |
whisper_output (dict): Dictionary containing Whisper ASR output with 'text' and 'chunks' | |
Returns: | |
str: VTT formatted subtitles as a string | |
""" | |
def format_timestamp(seconds): | |
"""Convert seconds to VTT timestamp format (HH:MM:SS.mmm)""" | |
if seconds is None: | |
return "99:59:59.999" # Use max time for None values | |
hours = int(seconds // 3600) | |
minutes = int((seconds % 3600) // 60) | |
seconds_remainder = seconds % 60 | |
return f"{hours:02d}:{minutes:02d}:{seconds_remainder:06.3f}".replace('.', ',') | |
# Start with VTT header | |
vtt_output = "WEBVTT\n\n" | |
# Process each chunk | |
for i, chunk in enumerate(whisper_output['chunks'], 1): | |
start_time, end_time = chunk['timestamp'] | |
# Format the subtitle entry | |
vtt_output += f"{i}\n" | |
vtt_output += f"{format_timestamp(start_time)} --> {format_timestamp(end_time)}\n" | |
vtt_output += f"{chunk['text'].strip()}\n\n" | |
return vtt_output | |
def dynamic_gpu_duration(func, duration, *args): | |
def wrapped_func(): | |
return func(*args) | |
return wrapped_func() | |
def dummy_gpu(): | |
return None | |
def do_transcribe(inputs): | |
if inputs is None: | |
raise gr.Error("No audio file submitted! Please upload or record an audio file before submitting your request.") | |
result = pipe(inputs, batch_size=BATCH_SIZE, generate_kwargs={"task": "transcribe", "language": "et"}, return_timestamps=True) | |
return convert_to_vtt(result) | |
def transcribe(file_path): | |
with open(file_path, "rb") as f: | |
audio_data = ffmpeg_read(f.read(), 16000) | |
# Calculate the length in seconds | |
audio_length = len(audio_data) / 16000 | |
#expected_transcribe_duration = max(59, int(audio_length / 5.0)) | |
expected_transcribe_duration = 59 | |
gr.Info(f"Starting to transcribe, requesting a GPU for {expected_transcribe_duration} seconds") | |
return dynamic_gpu_duration(do_transcribe, expected_transcribe_duration, file_path) | |
def _return_yt_html_embed(yt_url): | |
video_id = yt_url.split("?v=")[-1] | |
HTML_str = ( | |
f'<center> <iframe width="500" height="320" src="https://www.youtube.com/embed/{video_id}"> </iframe>' | |
" </center>" | |
) | |
return HTML_str | |
def download_yt_audio(yt_url, filename): | |
info_loader = youtube_dl.YoutubeDL() | |
try: | |
info = info_loader.extract_info(yt_url, download=False) | |
except youtube_dl.utils.DownloadError as err: | |
raise gr.Error(str(err)) | |
file_length = info["duration_string"] | |
file_h_m_s = file_length.split(":") | |
file_h_m_s = [int(sub_length) for sub_length in file_h_m_s] | |
if len(file_h_m_s) == 1: | |
file_h_m_s.insert(0, 0) | |
if len(file_h_m_s) == 2: | |
file_h_m_s.insert(0, 0) | |
file_length_s = file_h_m_s[0] * 3600 + file_h_m_s[1] * 60 + file_h_m_s[2] | |
if file_length_s > YT_LENGTH_LIMIT_S: | |
yt_length_limit_hms = time.strftime("%HH:%MM:%SS", time.gmtime(YT_LENGTH_LIMIT_S)) | |
file_length_hms = time.strftime("%HH:%MM:%SS", time.gmtime(file_length_s)) | |
raise gr.Error(f"Maximum YouTube length is {yt_length_limit_hms}, got {file_length_hms} YouTube video.") | |
ydl_opts = {"outtmpl": filename, "format": "worstvideo[ext=mp4]+bestaudio[ext=m4a]/best[ext=mp4]/best"} | |
with youtube_dl.YoutubeDL(ydl_opts) as ydl: | |
try: | |
ydl.download([yt_url]) | |
except youtube_dl.utils.ExtractorError as err: | |
raise gr.Error(str(err)) | |
def yt_transcribe(yt_url, max_filesize=75.0): | |
with tempfile.TemporaryDirectory() as tmpdirname: | |
filepath = os.path.join(tmpdirname, "video.mp4") | |
download_yt_audio(yt_url, filepath) | |
text = transcribe(transcribe, filepath) | |
return text | |
demo = gr.Blocks(theme=gr.themes.Ocean()) | |
mf_transcribe = gr.Interface( | |
fn=transcribe, | |
inputs=[ | |
gr.Audio(sources="microphone", type="filepath") | |
], | |
#outputs="text", | |
outputs=gr.Textbox(label="VTT subtitles", elem_id="text", show_label=True, show_copy_button=True, autoscroll=False, interactive=True), | |
title="Generate Estonian subtitles", | |
description=( | |
"Transcribe long-form microphone or audio inputs with the click of a button! Demo uses the" | |
f" checkpoint [{MODEL_NAME}](https://huggingface.co./{MODEL_NAME}) and 🤗 Transformers to transcribe audio files" | |
" of arbitrary length." | |
), | |
allow_flagging="never", | |
) | |
file_transcribe = gr.Interface( | |
fn=transcribe, | |
inputs=[ | |
gr.Audio(sources="upload", type="filepath", label="Audio file") | |
], | |
#outputs="text", | |
outputs=gr.Textbox(label="VTT subtitles", elem_id="text", show_label=True, show_copy_button=True, autoscroll=False, interactive=True), | |
title="Generate Estonian subtitles", | |
description=( | |
"Transcribe long-form microphone or audio inputs with the click of a button! Demo uses the" | |
f" checkpoint [{MODEL_NAME}](https://huggingface.co./{MODEL_NAME}) and 🤗 Transformers to transcribe audio files" | |
" of arbitrary length." | |
), | |
allow_flagging="never", | |
) | |
yt_transcribe = gr.Interface( | |
fn=yt_transcribe, | |
inputs=[ | |
gr.Textbox(lines=1, placeholder="Paste the URL to a YouTube video here", label="YouTube URL") | |
], | |
#outputs=["html", "text"], | |
outputs=gr.Textbox(label="VTT subtitles", elem_id="text", show_label=True, show_copy_button=True, autoscroll=False, interactive=True), | |
title="Generate Estonian subtitles", | |
description=( | |
"Transcribe long-form YouTube videos with the click of a button! Demo uses the checkpoint" | |
f" [{MODEL_NAME}](https://huggingface.co./{MODEL_NAME}) and 🤗 Transformers to transcribe video files of" | |
" arbitrary length. NB! YouTube seems to often block download requests from Huggingface and there is nothing we can do about it." | |
), | |
allow_flagging="never", | |
) | |
with demo: | |
gr.TabbedInterface([mf_transcribe, file_transcribe, yt_transcribe], ["Microphone", "Audio file", "YouTube"]) | |
demo.queue().launch(ssr_mode=False) | |