File size: 6,788 Bytes
5d52c32
6c226f9
 
 
8e787d3
6c226f9
d790c0b
 
 
88183ad
6c226f9
a8d52d3
9d6fa91
66efbc3
d790c0b
6c226f9
 
 
 
 
 
 
 
 
 
 
3d0dfdb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
abba8cd
 
 
 
 
4c37d8b
abba8cd
 
 
857ff61
 
 
 
abba8cd
3c0cd8e
 
6c226f9
3d0dfdb
 
6c226f9
abba8cd
6722e17
 
abba8cd
 
56f07a2
a3abe32
 
abba8cd
6722e17
abba8cd
6c226f9
 
 
 
 
 
 
 
 
d790c0b
 
3c0cd8e
d790c0b
 
 
 
3c0cd8e
d790c0b
 
 
3c0cd8e
d790c0b
 
 
 
 
3c0cd8e
d790c0b
 
 
 
3c0cd8e
d790c0b
3c0cd8e
d790c0b
 
 
 
 
 
abba8cd
29f2174
66efbc3
d790c0b
 
 
abba8cd
 
6c226f9
de528b8
6c226f9
 
47407ef
6c226f9
 
 
 
29f2174
3c0cd8e
03ca7c2
77c67ca
29f2174
3c0cd8e
 
 
 
 
 
 
 
 
 
 
29f2174
6c226f9
de528b8
 
29f2174
6c226f9
b95b5ca
6c226f9
 
 
 
 
 
 
 
7097513
29f2174
7097513
de528b8
 
29f2174
6c226f9
b95b5ca
 
3d0dfdb
6c226f9
 
 
 
 
3c0cd8e
6c226f9
47407ef
7097513
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
import spaces
import torch

import gradio as gr
import yt_dlp as youtube_dl
from transformers import pipeline
from transformers.pipelines.audio_utils import ffmpeg_read

import tempfile
import os

MODEL_NAME = "TalTechNLP/whisper-large-v3-turbo-et-subs"
BATCH_SIZE = 8
FILE_LIMIT_MB = 1000
YT_LENGTH_LIMIT_S = 3600  # limit to 1 hour YouTube files

device = 0 if torch.cuda.is_available() else "cpu"

pipe = pipeline(
    task="automatic-speech-recognition",
    model=MODEL_NAME,
    chunk_length_s=30,
    device=device,
)


def convert_to_vtt(whisper_output):
    """
    Convert Whisper ASR output to VTT subtitle format.
    
    Args:
        whisper_output (dict): Dictionary containing Whisper ASR output with 'text' and 'chunks'
        
    Returns:
        str: VTT formatted subtitles as a string
    """
    def format_timestamp(seconds):
        """Convert seconds to VTT timestamp format (HH:MM:SS.mmm)"""
        if seconds is None:
            return "99:59:59.999"  # Use max time for None values
        
        hours = int(seconds // 3600)
        minutes = int((seconds % 3600) // 60)
        seconds_remainder = seconds % 60
        return f"{hours:02d}:{minutes:02d}:{seconds_remainder:06.3f}".replace('.', ',')

    # Start with VTT header
    vtt_output = "WEBVTT\n\n"
    
    # Process each chunk
    for i, chunk in enumerate(whisper_output['chunks'], 1):
        start_time, end_time = chunk['timestamp']
        
        # Format the subtitle entry
        vtt_output += f"{i}\n"
        vtt_output += f"{format_timestamp(start_time)} --> {format_timestamp(end_time)}\n"
        vtt_output += f"{chunk['text'].strip()}\n\n"
    
    return vtt_output


def dynamic_gpu_duration(func, duration, *args):

    @spaces.GPU(duration=duration)
    def wrapped_func():
        return func(*args)

    return wrapped_func()

@spaces.GPU
def dummy_gpu():
    return None

def do_transcribe(inputs):
    if inputs is None:
        raise gr.Error("No audio file submitted! Please upload or record an audio file before submitting your request.")

    result = pipe(inputs, batch_size=BATCH_SIZE, generate_kwargs={"task": "transcribe", "language": "et"}, return_timestamps=True)
    return convert_to_vtt(result)

def transcribe(file_path):
    with open(file_path, "rb") as f:
        audio_data = ffmpeg_read(f.read(), 16000)
    
    # Calculate the length in seconds
    audio_length = len(audio_data) / 16000
    #expected_transcribe_duration = max(59, int(audio_length / 5.0))
    expected_transcribe_duration = 59
    gr.Info(f"Starting to transcribe, requesting a GPU for {expected_transcribe_duration} seconds")
    return dynamic_gpu_duration(do_transcribe, expected_transcribe_duration, file_path)


def _return_yt_html_embed(yt_url):
    video_id = yt_url.split("?v=")[-1]
    HTML_str = (
        f'<center> <iframe width="500" height="320" src="https://www.youtube.com/embed/{video_id}"> </iframe>'
        " </center>"
    )
    return HTML_str

def download_yt_audio(yt_url, filename):
    info_loader = youtube_dl.YoutubeDL()
    
    try:
        info = info_loader.extract_info(yt_url, download=False)
    except youtube_dl.utils.DownloadError as err:
        raise gr.Error(str(err))
    
    file_length = info["duration_string"]
    file_h_m_s = file_length.split(":")
    file_h_m_s = [int(sub_length) for sub_length in file_h_m_s]
    
    if len(file_h_m_s) == 1:
        file_h_m_s.insert(0, 0)
    if len(file_h_m_s) == 2:
        file_h_m_s.insert(0, 0)
    file_length_s = file_h_m_s[0] * 3600 + file_h_m_s[1] * 60 + file_h_m_s[2]
    
    if file_length_s > YT_LENGTH_LIMIT_S:
        yt_length_limit_hms = time.strftime("%HH:%MM:%SS", time.gmtime(YT_LENGTH_LIMIT_S))
        file_length_hms = time.strftime("%HH:%MM:%SS", time.gmtime(file_length_s))
        raise gr.Error(f"Maximum YouTube length is {yt_length_limit_hms}, got {file_length_hms} YouTube video.")
    
    ydl_opts = {"outtmpl": filename, "format": "worstvideo[ext=mp4]+bestaudio[ext=m4a]/best[ext=mp4]/best"}
    
    with youtube_dl.YoutubeDL(ydl_opts) as ydl:
        try:
            ydl.download([yt_url])
        except youtube_dl.utils.ExtractorError as err:
            raise gr.Error(str(err))


def yt_transcribe(yt_url, max_filesize=75.0):

    with tempfile.TemporaryDirectory() as tmpdirname:
        filepath = os.path.join(tmpdirname, "video.mp4")
        download_yt_audio(yt_url, filepath)
        text = transcribe(transcribe, filepath)
        

    return text


demo = gr.Blocks(theme=gr.themes.Ocean())

mf_transcribe = gr.Interface(
    fn=transcribe,
    inputs=[
        gr.Audio(sources="microphone", type="filepath")
    ],
    #outputs="text",
    outputs=gr.Textbox(label="VTT subtitles", elem_id="text", show_label=True, show_copy_button=True, autoscroll=False, interactive=True),
    title="Generate Estonian subtitles",
    description=(
        "Transcribe long-form microphone or audio inputs with the click of a button! Demo uses the"
        f" checkpoint [{MODEL_NAME}](https://huggingface.co./{MODEL_NAME}) and 🤗 Transformers to transcribe audio files"
        " of arbitrary length."
    ),
    allow_flagging="never",
)

file_transcribe = gr.Interface(
    fn=transcribe,
    inputs=[
        gr.Audio(sources="upload", type="filepath", label="Audio file")
    ],
    #outputs="text",
    outputs=gr.Textbox(label="VTT subtitles", elem_id="text", show_label=True, show_copy_button=True, autoscroll=False, interactive=True),
    title="Generate Estonian subtitles",
    description=(
        "Transcribe long-form microphone or audio inputs with the click of a button! Demo uses the"
        f" checkpoint [{MODEL_NAME}](https://huggingface.co./{MODEL_NAME}) and 🤗 Transformers to transcribe audio files"
        " of arbitrary length."
    ),
    allow_flagging="never",
)

yt_transcribe = gr.Interface(
    fn=yt_transcribe,
    inputs=[
        gr.Textbox(lines=1, placeholder="Paste the URL to a YouTube video here", label="YouTube URL")
    ],
    #outputs=["html", "text"],
    outputs=gr.Textbox(label="VTT subtitles", elem_id="text", show_label=True, show_copy_button=True, autoscroll=False, interactive=True),
    title="Generate Estonian subtitles",
    description=(
        "Transcribe long-form YouTube videos with the click of a button! Demo uses the checkpoint"
        f" [{MODEL_NAME}](https://huggingface.co./{MODEL_NAME}) and 🤗 Transformers to transcribe video files of"
        " arbitrary length. NB! YouTube seems to often block download requests from Huggingface and there is nothing we can do about it."
    ),
    allow_flagging="never",
)

with demo:
    gr.TabbedInterface([mf_transcribe, file_transcribe, yt_transcribe], ["Microphone", "Audio file", "YouTube"])

demo.queue().launch(ssr_mode=False)