Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -9,7 +9,7 @@ from transformers.pipelines.audio_utils import ffmpeg_read
|
|
9 |
import tempfile
|
10 |
import os
|
11 |
|
12 |
-
MODEL_NAME = "
|
13 |
BATCH_SIZE = 8
|
14 |
FILE_LIMIT_MB = 1000
|
15 |
YT_LENGTH_LIMIT_S = 3600 # limit to 1 hour YouTube files
|
@@ -25,11 +25,11 @@ pipe = pipeline(
|
|
25 |
|
26 |
|
27 |
@spaces.GPU
|
28 |
-
def transcribe(inputs
|
29 |
if inputs is None:
|
30 |
raise gr.Error("No audio file submitted! Please upload or record an audio file before submitting your request.")
|
31 |
|
32 |
-
text = pipe(inputs, batch_size=BATCH_SIZE, generate_kwargs={"task":
|
33 |
return text
|
34 |
|
35 |
|
@@ -73,7 +73,7 @@ def download_yt_audio(yt_url, filename):
|
|
73 |
raise gr.Error(str(err))
|
74 |
|
75 |
@spaces.GPU
|
76 |
-
def yt_transcribe(yt_url,
|
77 |
html_embed_str = _return_yt_html_embed(yt_url)
|
78 |
|
79 |
with tempfile.TemporaryDirectory() as tmpdirname:
|
@@ -85,7 +85,7 @@ def yt_transcribe(yt_url, task, max_filesize=75.0):
|
|
85 |
inputs = ffmpeg_read(inputs, pipe.feature_extractor.sampling_rate)
|
86 |
inputs = {"array": inputs, "sampling_rate": pipe.feature_extractor.sampling_rate}
|
87 |
|
88 |
-
text = pipe(inputs, batch_size=BATCH_SIZE, generate_kwargs={"task":
|
89 |
|
90 |
return html_embed_str, text
|
91 |
|
@@ -95,11 +95,10 @@ demo = gr.Blocks(theme=gr.themes.Ocean())
|
|
95 |
mf_transcribe = gr.Interface(
|
96 |
fn=transcribe,
|
97 |
inputs=[
|
98 |
-
gr.Audio(sources="microphone", type="filepath")
|
99 |
-
gr.Radio(["transcribe", "translate"], label="Task", value="transcribe"),
|
100 |
],
|
101 |
outputs="text",
|
102 |
-
title="
|
103 |
description=(
|
104 |
"Transcribe long-form microphone or audio inputs with the click of a button! Demo uses the"
|
105 |
f" checkpoint [{MODEL_NAME}](https://huggingface.co/{MODEL_NAME}) and 🤗 Transformers to transcribe audio files"
|
@@ -111,11 +110,10 @@ mf_transcribe = gr.Interface(
|
|
111 |
file_transcribe = gr.Interface(
|
112 |
fn=transcribe,
|
113 |
inputs=[
|
114 |
-
gr.Audio(sources="upload", type="filepath", label="Audio file")
|
115 |
-
gr.Radio(["transcribe", "translate"], label="Task", value="transcribe"),
|
116 |
],
|
117 |
outputs="text",
|
118 |
-
title="
|
119 |
description=(
|
120 |
"Transcribe long-form microphone or audio inputs with the click of a button! Demo uses the"
|
121 |
f" checkpoint [{MODEL_NAME}](https://huggingface.co/{MODEL_NAME}) and 🤗 Transformers to transcribe audio files"
|
@@ -127,11 +125,10 @@ file_transcribe = gr.Interface(
|
|
127 |
yt_transcribe = gr.Interface(
|
128 |
fn=yt_transcribe,
|
129 |
inputs=[
|
130 |
-
gr.Textbox(lines=1, placeholder="Paste the URL to a YouTube video here", label="YouTube URL")
|
131 |
-
gr.Radio(["transcribe", "translate"], label="Task", value="transcribe")
|
132 |
],
|
133 |
outputs=["html", "text"],
|
134 |
-
title="
|
135 |
description=(
|
136 |
"Transcribe long-form YouTube videos with the click of a button! Demo uses the checkpoint"
|
137 |
f" [{MODEL_NAME}](https://huggingface.co/{MODEL_NAME}) and 🤗 Transformers to transcribe video files of"
|
|
|
9 |
import tempfile
|
10 |
import os
|
11 |
|
12 |
+
MODEL_NAME = "TalTechNLP/whisper-large-v3-et-subs"
|
13 |
BATCH_SIZE = 8
|
14 |
FILE_LIMIT_MB = 1000
|
15 |
YT_LENGTH_LIMIT_S = 3600 # limit to 1 hour YouTube files
|
|
|
25 |
|
26 |
|
27 |
@spaces.GPU
|
28 |
+
def transcribe(inputs):
|
29 |
if inputs is None:
|
30 |
raise gr.Error("No audio file submitted! Please upload or record an audio file before submitting your request.")
|
31 |
|
32 |
+
text = pipe(inputs, batch_size=BATCH_SIZE, generate_kwargs={"task": "transcribe", "language": "et"}, return_timestamps=True)["text"]
|
33 |
return text
|
34 |
|
35 |
|
|
|
73 |
raise gr.Error(str(err))
|
74 |
|
75 |
@spaces.GPU
|
76 |
+
def yt_transcribe(yt_url, max_filesize=75.0):
|
77 |
html_embed_str = _return_yt_html_embed(yt_url)
|
78 |
|
79 |
with tempfile.TemporaryDirectory() as tmpdirname:
|
|
|
85 |
inputs = ffmpeg_read(inputs, pipe.feature_extractor.sampling_rate)
|
86 |
inputs = {"array": inputs, "sampling_rate": pipe.feature_extractor.sampling_rate}
|
87 |
|
88 |
+
text = pipe(inputs, batch_size=BATCH_SIZE, generate_kwargs={"task": "transcribe", "language": "et"}, return_timestamps=True)["text"]
|
89 |
|
90 |
return html_embed_str, text
|
91 |
|
|
|
95 |
mf_transcribe = gr.Interface(
|
96 |
fn=transcribe,
|
97 |
inputs=[
|
98 |
+
gr.Audio(sources="microphone", type="filepath")
|
|
|
99 |
],
|
100 |
outputs="text",
|
101 |
+
title="Generate Estonian subtitles",
|
102 |
description=(
|
103 |
"Transcribe long-form microphone or audio inputs with the click of a button! Demo uses the"
|
104 |
f" checkpoint [{MODEL_NAME}](https://huggingface.co/{MODEL_NAME}) and 🤗 Transformers to transcribe audio files"
|
|
|
110 |
file_transcribe = gr.Interface(
|
111 |
fn=transcribe,
|
112 |
inputs=[
|
113 |
+
gr.Audio(sources="upload", type="filepath", label="Audio file")
|
|
|
114 |
],
|
115 |
outputs="text",
|
116 |
+
title="Generate Estonian subtitles",
|
117 |
description=(
|
118 |
"Transcribe long-form microphone or audio inputs with the click of a button! Demo uses the"
|
119 |
f" checkpoint [{MODEL_NAME}](https://huggingface.co/{MODEL_NAME}) and 🤗 Transformers to transcribe audio files"
|
|
|
125 |
yt_transcribe = gr.Interface(
|
126 |
fn=yt_transcribe,
|
127 |
inputs=[
|
128 |
+
gr.Textbox(lines=1, placeholder="Paste the URL to a YouTube video here", label="YouTube URL")
|
|
|
129 |
],
|
130 |
outputs=["html", "text"],
|
131 |
+
title="Generate Estonian subtitles",
|
132 |
description=(
|
133 |
"Transcribe long-form YouTube videos with the click of a button! Demo uses the checkpoint"
|
134 |
f" [{MODEL_NAME}](https://huggingface.co/{MODEL_NAME}) and 🤗 Transformers to transcribe video files of"
|