Spaces:
Running
on
Zero
Running
on
Zero
import torch | |
from tqdm import tqdm | |
from transformers.cache_utils import Cache, DynamicCache | |
class OmniGenScheduler: | |
def __init__(self, num_steps: int=50, time_shifting_factor: int=1): | |
self.num_steps = num_steps | |
self.time_shift = time_shifting_factor | |
t = torch.linspace(0, 1, num_steps+1) | |
t = t / (t + time_shifting_factor - time_shifting_factor * t) | |
self.sigma = t | |
def crop_kv_cache(self, past_key_values, num_tokens_for_img): | |
crop_past_key_values = () | |
for layer_idx in range(len(past_key_values)): | |
key_states, value_states = past_key_values[layer_idx][:2] | |
crop_past_key_values += ((key_states[..., :-(num_tokens_for_img+1), :], value_states[..., :-(num_tokens_for_img+1), :], ),) | |
return crop_past_key_values | |
# return DynamicCache.from_legacy_cache(crop_past_key_values) | |
def crop_position_ids_for_cache(self, position_ids, num_tokens_for_img): | |
if isinstance(position_ids, list): | |
for i in range(len(position_ids)): | |
position_ids[i] = position_ids[i][:, -(num_tokens_for_img+1):] | |
else: | |
position_ids = position_ids[:, -(num_tokens_for_img+1):] | |
return position_ids | |
def crop_attention_mask_for_cache(self, attention_mask, num_tokens_for_img): | |
if isinstance(attention_mask, list): | |
return [x[..., -(num_tokens_for_img+1):, :] for x in attention_mask] | |
return attention_mask[..., -(num_tokens_for_img+1):, :] | |
def __call__(self, z, func, model_kwargs, use_kv_cache: bool=True): | |
past_key_values = None | |
for i in tqdm(range(self.num_steps)): | |
timesteps = torch.zeros(size=(len(z), )).to(z.device) + self.sigma[i] | |
pred, temp_past_key_values = func(z, timesteps, past_key_values=past_key_values, **model_kwargs) | |
sigma_next = self.sigma[i+1] | |
sigma = self.sigma[i] | |
z = z + (sigma_next - sigma) * pred | |
if i == 0 and use_kv_cache: | |
num_tokens_for_img = z.size(-1)*z.size(-2) // 4 | |
if isinstance(temp_past_key_values, list): | |
past_key_values = [self.crop_kv_cache(x, num_tokens_for_img) for x in temp_past_key_values] | |
model_kwargs['input_ids'] = [None] * len(temp_past_key_values) | |
else: | |
past_key_values = self.crop_kv_cache(temp_past_key_values, num_tokens_for_img) | |
model_kwargs['input_ids'] = None | |
model_kwargs['position_ids'] = self.crop_position_ids_for_cache(model_kwargs['position_ids'], num_tokens_for_img) | |
model_kwargs['attention_mask'] = self.crop_attention_mask_for_cache(model_kwargs['attention_mask'], num_tokens_for_img) | |
return z | |