import torch from tqdm import tqdm from transformers.cache_utils import Cache, DynamicCache class OmniGenScheduler: def __init__(self, num_steps: int=50, time_shifting_factor: int=1): self.num_steps = num_steps self.time_shift = time_shifting_factor t = torch.linspace(0, 1, num_steps+1) t = t / (t + time_shifting_factor - time_shifting_factor * t) self.sigma = t def crop_kv_cache(self, past_key_values, num_tokens_for_img): crop_past_key_values = () for layer_idx in range(len(past_key_values)): key_states, value_states = past_key_values[layer_idx][:2] crop_past_key_values += ((key_states[..., :-(num_tokens_for_img+1), :], value_states[..., :-(num_tokens_for_img+1), :], ),) return crop_past_key_values # return DynamicCache.from_legacy_cache(crop_past_key_values) def crop_position_ids_for_cache(self, position_ids, num_tokens_for_img): if isinstance(position_ids, list): for i in range(len(position_ids)): position_ids[i] = position_ids[i][:, -(num_tokens_for_img+1):] else: position_ids = position_ids[:, -(num_tokens_for_img+1):] return position_ids def crop_attention_mask_for_cache(self, attention_mask, num_tokens_for_img): if isinstance(attention_mask, list): return [x[..., -(num_tokens_for_img+1):, :] for x in attention_mask] return attention_mask[..., -(num_tokens_for_img+1):, :] def __call__(self, z, func, model_kwargs, use_kv_cache: bool=True): past_key_values = None for i in tqdm(range(self.num_steps)): timesteps = torch.zeros(size=(len(z), )).to(z.device) + self.sigma[i] pred, temp_past_key_values = func(z, timesteps, past_key_values=past_key_values, **model_kwargs) sigma_next = self.sigma[i+1] sigma = self.sigma[i] z = z + (sigma_next - sigma) * pred if i == 0 and use_kv_cache: num_tokens_for_img = z.size(-1)*z.size(-2) // 4 if isinstance(temp_past_key_values, list): past_key_values = [self.crop_kv_cache(x, num_tokens_for_img) for x in temp_past_key_values] model_kwargs['input_ids'] = [None] * len(temp_past_key_values) else: past_key_values = self.crop_kv_cache(temp_past_key_values, num_tokens_for_img) model_kwargs['input_ids'] = None model_kwargs['position_ids'] = self.crop_position_ids_for_cache(model_kwargs['position_ids'], num_tokens_for_img) model_kwargs['attention_mask'] = self.crop_attention_mask_for_cache(model_kwargs['attention_mask'], num_tokens_for_img) return z