Spaces:
Running
on
Zero
Running
on
Zero
# Amphion Diffusion-based Vocoder Recipe | |
## Supported Model Architectures | |
Diffusion-based Vocoders utilize the diffusion process for audio generation, as illustrated below: | |
<br> | |
<div align="center"> | |
<img src="../../../imgs/vocoder/diffusion/pipeline.png" width="90%"> | |
</div> | |
<br> | |
Until now, Amphion Diffusion-based Vocoder has supported the following models and training strategies. | |
- **Models** | |
- [DiffWave](https://arxiv.org/pdf/2009.09761) | |
- **Training and Inference Strategy** | |
- [DDPM](https://proceedings.neurips.cc/paper/2020/hash/4c5bcfec8584af0d967f1ab10179ca4b-Abstract.html) | |
You can use any vocoder architecture with any dataset you want. There are four steps in total: | |
1. Data preparation | |
2. Feature extraction | |
3. Training | |
4. Inference | |
> **NOTE:** You need to run every command of this recipe in the `Amphion` root path: | |
> ```bash | |
> cd Amphion | |
> ``` | |
## 1. Data Preparation | |
You can train the vocoder with any datasets. Amphion's supported open-source datasets are detailed [here](../../../datasets/README.md). | |
### Configuration | |
Specify the dataset path in `exp_config_base.json`. Note that you can change the `dataset` list to use your preferred datasets. | |
```json | |
"dataset": [ | |
"csd", | |
"kising", | |
"m4singer", | |
"nus48e", | |
"opencpop", | |
"opensinger", | |
"opera", | |
"pjs", | |
"popbutfy", | |
"popcs", | |
"ljspeech", | |
"vctk", | |
"libritts", | |
], | |
"dataset_path": { | |
// TODO: Fill in your dataset path | |
"csd": "[dataset path]", | |
"kising": "[dataset path]", | |
"m4singer": "[dataset path]", | |
"nus48e": "[dataset path]", | |
"opencpop": "[dataset path]", | |
"opensinger": "[dataset path]", | |
"opera": "[dataset path]", | |
"pjs": "[dataset path]", | |
"popbutfy": "[dataset path]", | |
"popcs": "[dataset path]", | |
"ljspeech": "[dataset path]", | |
"vctk": "[dataset path]", | |
"libritts": "[dataset path]", | |
}, | |
``` | |
### 2. Feature Extraction | |
The needed features are speficied in the individual vocoder direction so it doesn't require any modification. | |
### Configuration | |
Specify the dataset path and the output path for saving the processed data and the training model in `exp_config_base.json`: | |
```json | |
// TODO: Fill in the output log path. The default value is "Amphion/ckpts/vocoder" | |
"log_dir": "ckpts/vocoder", | |
"preprocess": { | |
// TODO: Fill in the output data path. The default value is "Amphion/data" | |
"processed_dir": "data", | |
... | |
}, | |
``` | |
### Run | |
Run the `run.sh` as the preproces stage (set `--stage 1`). | |
```bash | |
sh egs/vocoder/diffusion/{vocoder_name}/run.sh --stage 1 | |
``` | |
> **NOTE:** The `CUDA_VISIBLE_DEVICES` is set as `"0"` in default. You can change it when running `run.sh` by specifying such as `--gpu "1"`. | |
## 3. Training | |
### Configuration | |
We provide the default hyparameters in the `exp_config_base.json`. They can work on single NVIDIA-24g GPU. You can adjust them based on you GPU machines. | |
```json | |
"train": { | |
"batch_size": 32, | |
"max_epoch": 1000000, | |
"save_checkpoint_stride": [20], | |
"adamw": { | |
"lr": 2.0e-4, | |
"adam_b1": 0.8, | |
"adam_b2": 0.99 | |
}, | |
"exponential_lr": { | |
"lr_decay": 0.999 | |
}, | |
} | |
``` | |
### Run | |
Run the `run.sh` as the training stage (set `--stage 2`). Specify a experimental name to run the following command. The tensorboard logs and checkpoints will be saved in `Amphion/ckpts/vocoder/[YourExptName]`. | |
```bash | |
sh egs/vocoder/diffusion/{vocoder_name}/run.sh --stage 2 --name [YourExptName] | |
``` | |
> **NOTE:** The `CUDA_VISIBLE_DEVICES` is set as `"0"` in default. You can change it when running `run.sh` by specifying such as `--gpu "0,1,2,3"`. | |
If you want to resume or finetune from a pretrained model, run: | |
```bash | |
sh egs/vocoder/diffusion/{vocoder_name}/run.sh --stage 2 \ | |
--name [YourExptName] \ | |
--resume_type ["resume" for resuming training and "finetune" for loading parameters only] \ | |
--checkpoint Amphion/ckpts/vocoder/[YourExptName]/checkpoint \ | |
``` | |
> **NOTE:** For multi-gpu training, the `main_process_port` is set as `29500` in default. You can change it when running `run.sh` by specifying such as `--main_process_port 29501`. | |
## 4. Inference | |
### Run | |
Run the `run.sh` as the training stage (set `--stage 3`), we provide three different inference modes, including `infer_from_dataset`, `infer_from_feature`, `and infer_from_audio`. | |
```bash | |
sh egs/vocoder/diffusion/{vocoder_name}/run.sh --stage 3 \ | |
--infer_mode [Your chosen inference mode] \ | |
--infer_datasets [Datasets you want to inference, needed when infer_from_dataset] \ | |
--infer_feature_dir [Your path to your predicted acoustic features, needed when infer_from_feature] \ | |
--infer_audio_dir [Your path to your audio files, needed when infer_form_audio] \ | |
--infer_expt_dir Amphion/ckpts/vocoder/[YourExptName] \ | |
--infer_output_dir Amphion/ckpts/vocoder/[YourExptName]/result \ | |
``` | |
#### a. Inference from Dataset | |
Run the `run.sh` with specified datasets, here is an example. | |
```bash | |
sh egs/vocoder/diffusion/{vocoder_name}/run.sh --stage 3 \ | |
--infer_mode infer_from_dataset \ | |
--infer_datasets "libritts vctk ljspeech" \ | |
--infer_expt_dir Amphion/ckpts/vocoder/[YourExptName] \ | |
--infer_output_dir Amphion/ckpts/vocoder/[YourExptName]/result \ | |
``` | |
#### b. Inference from Features | |
If you want to inference from your generated acoustic features, you should first prepare your acoustic features into the following structure: | |
```plaintext | |
┣ {infer_feature_dir} | |
┃ ┣ mels | |
┃ ┃ ┣ sample1.npy | |
┃ ┃ ┣ sample2.npy | |
``` | |
Then run the `run.sh` with specificed folder direction, here is an example. | |
```bash | |
sh egs/vocoder/diffusion/{vocoder_name}/run.sh --stage 3 \ | |
--infer_mode infer_from_feature \ | |
--infer_feature_dir [Your path to your predicted acoustic features] \ | |
--infer_expt_dir Amphion/ckpts/vocoder/[YourExptName] \ | |
--infer_output_dir Amphion/ckpts/vocoder/[YourExptName]/result \ | |
``` | |
#### c. Inference from Audios | |
If you want to inference from audios for quick analysis synthesis, you should first prepare your audios into the following structure: | |
```plaintext | |
┣ audios | |
┃ ┣ sample1.wav | |
┃ ┣ sample2.wav | |
``` | |
Then run the `run.sh` with specificed folder direction, here is an example. | |
```bash | |
sh egs/vocoder/diffusion/{vocoder_name}/run.sh --stage 3 \ | |
--infer_mode infer_from_audio \ | |
--infer_audio_dir [Your path to your audio files] \ | |
--infer_expt_dir Amphion/ckpts/vocoder/[YourExptName] \ | |
--infer_output_dir Amphion/ckpts/vocoder/[YourExptName]/result \ | |
``` | |