Spaces:
Running
on
Zero
Running
on
Zero
# Copyright (c) 2023 Amphion. | |
# | |
# This source code is licensed under the MIT license found in the | |
# LICENSE file in the root directory of this source tree. | |
import os | |
import sys | |
import time | |
import torch | |
import json | |
import itertools | |
import accelerate | |
import torch.distributed as dist | |
import torch.nn.functional as F | |
from tqdm import tqdm | |
from torch.nn.parallel import DistributedDataParallel | |
from torch.utils.data import DataLoader | |
from torch.utils.data.distributed import DistributedSampler | |
from torch.utils.tensorboard import SummaryWriter | |
from torch.optim import AdamW | |
from torch.optim.lr_scheduler import ExponentialLR | |
from librosa.filters import mel as librosa_mel_fn | |
from accelerate.logging import get_logger | |
from pathlib import Path | |
from utils.io import save_audio | |
from utils.data_utils import * | |
from utils.util import ( | |
Logger, | |
ValueWindow, | |
remove_older_ckpt, | |
set_all_random_seed, | |
save_config, | |
) | |
from utils.mel import extract_mel_features | |
from models.vocoders.vocoder_trainer import VocoderTrainer | |
from models.vocoders.gan.gan_vocoder_dataset import ( | |
GANVocoderDataset, | |
GANVocoderCollator, | |
) | |
from models.vocoders.gan.generator.bigvgan import BigVGAN | |
from models.vocoders.gan.generator.hifigan import HiFiGAN | |
from models.vocoders.gan.generator.melgan import MelGAN | |
from models.vocoders.gan.generator.nsfhifigan import NSFHiFiGAN | |
from models.vocoders.gan.generator.apnet import APNet | |
from models.vocoders.gan.discriminator.mpd import MultiPeriodDiscriminator | |
from models.vocoders.gan.discriminator.mrd import MultiResolutionDiscriminator | |
from models.vocoders.gan.discriminator.mssbcqtd import MultiScaleSubbandCQTDiscriminator | |
from models.vocoders.gan.discriminator.msd import MultiScaleDiscriminator | |
from models.vocoders.gan.discriminator.msstftd import MultiScaleSTFTDiscriminator | |
from models.vocoders.gan.gan_vocoder_inference import vocoder_inference | |
supported_generators = { | |
"bigvgan": BigVGAN, | |
"hifigan": HiFiGAN, | |
"melgan": MelGAN, | |
"nsfhifigan": NSFHiFiGAN, | |
"apnet": APNet, | |
} | |
supported_discriminators = { | |
"mpd": MultiPeriodDiscriminator, | |
"msd": MultiScaleDiscriminator, | |
"mrd": MultiResolutionDiscriminator, | |
"msstftd": MultiScaleSTFTDiscriminator, | |
"mssbcqtd": MultiScaleSubbandCQTDiscriminator, | |
} | |
class GANVocoderTrainer(VocoderTrainer): | |
def __init__(self, args, cfg): | |
super().__init__() | |
self.args = args | |
self.cfg = cfg | |
cfg.exp_name = args.exp_name | |
# Init accelerator | |
self._init_accelerator() | |
self.accelerator.wait_for_everyone() | |
# Init logger | |
with self.accelerator.main_process_first(): | |
self.logger = get_logger(args.exp_name, log_level=args.log_level) | |
self.logger.info("=" * 56) | |
self.logger.info("||\t\t" + "New training process started." + "\t\t||") | |
self.logger.info("=" * 56) | |
self.logger.info("\n") | |
self.logger.debug(f"Using {args.log_level.upper()} logging level.") | |
self.logger.info(f"Experiment name: {args.exp_name}") | |
self.logger.info(f"Experiment directory: {self.exp_dir}") | |
self.checkpoint_dir = os.path.join(self.exp_dir, "checkpoint") | |
if self.accelerator.is_main_process: | |
os.makedirs(self.checkpoint_dir, exist_ok=True) | |
self.logger.debug(f"Checkpoint directory: {self.checkpoint_dir}") | |
# Init training status | |
self.batch_count: int = 0 | |
self.step: int = 0 | |
self.epoch: int = 0 | |
self.max_epoch = ( | |
self.cfg.train.max_epoch if self.cfg.train.max_epoch > 0 else float("inf") | |
) | |
self.logger.info( | |
"Max epoch: {}".format( | |
self.max_epoch if self.max_epoch < float("inf") else "Unlimited" | |
) | |
) | |
# Check potential erorrs | |
if self.accelerator.is_main_process: | |
self._check_basic_configs() | |
self.save_checkpoint_stride = self.cfg.train.save_checkpoint_stride | |
self.checkpoints_path = [ | |
[] for _ in range(len(self.save_checkpoint_stride)) | |
] | |
self.run_eval = self.cfg.train.run_eval | |
# Set random seed | |
with self.accelerator.main_process_first(): | |
start = time.monotonic_ns() | |
self._set_random_seed(self.cfg.train.random_seed) | |
end = time.monotonic_ns() | |
self.logger.debug( | |
f"Setting random seed done in {(end - start) / 1e6:.2f}ms" | |
) | |
self.logger.debug(f"Random seed: {self.cfg.train.random_seed}") | |
# Build dataloader | |
with self.accelerator.main_process_first(): | |
self.logger.info("Building dataset...") | |
start = time.monotonic_ns() | |
self.train_dataloader, self.valid_dataloader = self._build_dataloader() | |
end = time.monotonic_ns() | |
self.logger.info(f"Building dataset done in {(end - start) / 1e6:.2f}ms") | |
# Build model | |
with self.accelerator.main_process_first(): | |
self.logger.info("Building model...") | |
start = time.monotonic_ns() | |
self.generator, self.discriminators = self._build_model() | |
end = time.monotonic_ns() | |
self.logger.debug(self.generator) | |
for _, discriminator in self.discriminators.items(): | |
self.logger.debug(discriminator) | |
self.logger.info(f"Building model done in {(end - start) / 1e6:.2f}ms") | |
self.logger.info(f"Model parameters: {self._count_parameters()/1e6:.2f}M") | |
# Build optimizers and schedulers | |
with self.accelerator.main_process_first(): | |
self.logger.info("Building optimizer and scheduler...") | |
start = time.monotonic_ns() | |
( | |
self.generator_optimizer, | |
self.discriminator_optimizer, | |
) = self._build_optimizer() | |
( | |
self.generator_scheduler, | |
self.discriminator_scheduler, | |
) = self._build_scheduler() | |
end = time.monotonic_ns() | |
self.logger.info( | |
f"Building optimizer and scheduler done in {(end - start) / 1e6:.2f}ms" | |
) | |
# Accelerator preparing | |
self.logger.info("Initializing accelerate...") | |
start = time.monotonic_ns() | |
( | |
self.train_dataloader, | |
self.valid_dataloader, | |
self.generator, | |
self.generator_optimizer, | |
self.discriminator_optimizer, | |
self.generator_scheduler, | |
self.discriminator_scheduler, | |
) = self.accelerator.prepare( | |
self.train_dataloader, | |
self.valid_dataloader, | |
self.generator, | |
self.generator_optimizer, | |
self.discriminator_optimizer, | |
self.generator_scheduler, | |
self.discriminator_scheduler, | |
) | |
for key, discriminator in self.discriminators.items(): | |
self.discriminators[key] = self.accelerator.prepare_model(discriminator) | |
end = time.monotonic_ns() | |
self.logger.info(f"Initializing accelerate done in {(end - start) / 1e6:.2f}ms") | |
# Build criterions | |
with self.accelerator.main_process_first(): | |
self.logger.info("Building criterion...") | |
start = time.monotonic_ns() | |
self.criterions = self._build_criterion() | |
end = time.monotonic_ns() | |
self.logger.info(f"Building criterion done in {(end - start) / 1e6:.2f}ms") | |
# Resume checkpoints | |
with self.accelerator.main_process_first(): | |
if args.resume_type: | |
self.logger.info("Resuming from checkpoint...") | |
start = time.monotonic_ns() | |
ckpt_path = Path(args.checkpoint) | |
if self._is_valid_pattern(ckpt_path.parts[-1]): | |
ckpt_path = self._load_model( | |
None, args.checkpoint, args.resume_type | |
) | |
else: | |
ckpt_path = self._load_model( | |
args.checkpoint, resume_type=args.resume_type | |
) | |
end = time.monotonic_ns() | |
self.logger.info( | |
f"Resuming from checkpoint done in {(end - start) / 1e6:.2f}ms" | |
) | |
self.checkpoints_path = json.load( | |
open(os.path.join(ckpt_path, "ckpts.json"), "r") | |
) | |
self.checkpoint_dir = os.path.join(self.exp_dir, "checkpoint") | |
if self.accelerator.is_main_process: | |
os.makedirs(self.checkpoint_dir, exist_ok=True) | |
self.logger.debug(f"Checkpoint directory: {self.checkpoint_dir}") | |
# Save config | |
self.config_save_path = os.path.join(self.exp_dir, "args.json") | |
def _build_dataset(self): | |
return GANVocoderDataset, GANVocoderCollator | |
def _build_criterion(self): | |
class feature_criterion(torch.nn.Module): | |
def __init__(self, cfg): | |
super(feature_criterion, self).__init__() | |
self.cfg = cfg | |
self.l1Loss = torch.nn.L1Loss(reduction="mean") | |
self.l2Loss = torch.nn.MSELoss(reduction="mean") | |
self.relu = torch.nn.ReLU() | |
def __call__(self, fmap_r, fmap_g): | |
loss = 0 | |
if self.cfg.model.generator in [ | |
"hifigan", | |
"nsfhifigan", | |
"bigvgan", | |
"apnet", | |
]: | |
for dr, dg in zip(fmap_r, fmap_g): | |
for rl, gl in zip(dr, dg): | |
loss += torch.mean(torch.abs(rl - gl)) | |
loss = loss * 2 | |
elif self.cfg.model.generator in ["melgan"]: | |
for dr, dg in zip(fmap_r, fmap_g): | |
for rl, gl in zip(dr, dg): | |
loss += self.l1Loss(rl, gl) | |
loss = loss * 10 | |
elif self.cfg.model.generator in ["codec"]: | |
for dr, dg in zip(fmap_r, fmap_g): | |
for rl, gl in zip(dr, dg): | |
loss = loss + self.l1Loss(rl, gl) / torch.mean( | |
torch.abs(rl) | |
) | |
KL_scale = len(fmap_r) * len(fmap_r[0]) | |
loss = 3 * loss / KL_scale | |
else: | |
raise NotImplementedError | |
return loss | |
class discriminator_criterion(torch.nn.Module): | |
def __init__(self, cfg): | |
super(discriminator_criterion, self).__init__() | |
self.cfg = cfg | |
self.l1Loss = torch.nn.L1Loss(reduction="mean") | |
self.l2Loss = torch.nn.MSELoss(reduction="mean") | |
self.relu = torch.nn.ReLU() | |
def __call__(self, disc_real_outputs, disc_generated_outputs): | |
loss = 0 | |
r_losses = [] | |
g_losses = [] | |
if self.cfg.model.generator in [ | |
"hifigan", | |
"nsfhifigan", | |
"bigvgan", | |
"apnet", | |
]: | |
for dr, dg in zip(disc_real_outputs, disc_generated_outputs): | |
r_loss = torch.mean((1 - dr) ** 2) | |
g_loss = torch.mean(dg**2) | |
loss += r_loss + g_loss | |
r_losses.append(r_loss.item()) | |
g_losses.append(g_loss.item()) | |
elif self.cfg.model.generator in ["melgan"]: | |
for dr, dg in zip(disc_real_outputs, disc_generated_outputs): | |
r_loss = torch.mean(self.relu(1 - dr)) | |
g_loss = torch.mean(self.relu(1 + dg)) | |
loss = loss + r_loss + g_loss | |
r_losses.append(r_loss.item()) | |
g_losses.append(g_loss.item()) | |
elif self.cfg.model.generator in ["codec"]: | |
for dr, dg in zip(disc_real_outputs, disc_generated_outputs): | |
r_loss = torch.mean(self.relu(1 - dr)) | |
g_loss = torch.mean(self.relu(1 + dg)) | |
loss = loss + r_loss + g_loss | |
r_losses.append(r_loss.item()) | |
g_losses.append(g_loss.item()) | |
loss = loss / len(disc_real_outputs) | |
else: | |
raise NotImplementedError | |
return loss, r_losses, g_losses | |
class generator_criterion(torch.nn.Module): | |
def __init__(self, cfg): | |
super(generator_criterion, self).__init__() | |
self.cfg = cfg | |
self.l1Loss = torch.nn.L1Loss(reduction="mean") | |
self.l2Loss = torch.nn.MSELoss(reduction="mean") | |
self.relu = torch.nn.ReLU() | |
def __call__(self, disc_outputs): | |
loss = 0 | |
gen_losses = [] | |
if self.cfg.model.generator in [ | |
"hifigan", | |
"nsfhifigan", | |
"bigvgan", | |
"apnet", | |
]: | |
for dg in disc_outputs: | |
l = torch.mean((1 - dg) ** 2) | |
gen_losses.append(l) | |
loss += l | |
elif self.cfg.model.generator in ["melgan"]: | |
for dg in disc_outputs: | |
l = -torch.mean(dg) | |
gen_losses.append(l) | |
loss += l | |
elif self.cfg.model.generator in ["codec"]: | |
for dg in disc_outputs: | |
l = torch.mean(self.relu(1 - dg)) / len(disc_outputs) | |
gen_losses.append(l) | |
loss += l | |
else: | |
raise NotImplementedError | |
return loss, gen_losses | |
class mel_criterion(torch.nn.Module): | |
def __init__(self, cfg): | |
super(mel_criterion, self).__init__() | |
self.cfg = cfg | |
self.l1Loss = torch.nn.L1Loss(reduction="mean") | |
self.l2Loss = torch.nn.MSELoss(reduction="mean") | |
self.relu = torch.nn.ReLU() | |
def __call__(self, y_gt, y_pred): | |
loss = 0 | |
if self.cfg.model.generator in [ | |
"hifigan", | |
"nsfhifigan", | |
"bigvgan", | |
"melgan", | |
"codec", | |
"apnet", | |
]: | |
y_gt_mel = extract_mel_features(y_gt, self.cfg.preprocess) | |
y_pred_mel = extract_mel_features( | |
y_pred.squeeze(1), self.cfg.preprocess | |
) | |
loss = self.l1Loss(y_gt_mel, y_pred_mel) * 45 | |
else: | |
raise NotImplementedError | |
return loss | |
class wav_criterion(torch.nn.Module): | |
def __init__(self, cfg): | |
super(wav_criterion, self).__init__() | |
self.cfg = cfg | |
self.l1Loss = torch.nn.L1Loss(reduction="mean") | |
self.l2Loss = torch.nn.MSELoss(reduction="mean") | |
self.relu = torch.nn.ReLU() | |
def __call__(self, y_gt, y_pred): | |
loss = 0 | |
if self.cfg.model.generator in [ | |
"hifigan", | |
"nsfhifigan", | |
"bigvgan", | |
"apnet", | |
]: | |
loss = self.l2Loss(y_gt, y_pred.squeeze(1)) * 100 | |
elif self.cfg.model.generator in ["melgan"]: | |
loss = self.l1Loss(y_gt, y_pred.squeeze(1)) / 10 | |
elif self.cfg.model.generator in ["codec"]: | |
loss = self.l1Loss(y_gt, y_pred.squeeze(1)) + self.l2Loss( | |
y_gt, y_pred.squeeze(1) | |
) | |
loss /= 10 | |
else: | |
raise NotImplementedError | |
return loss | |
class phase_criterion(torch.nn.Module): | |
def __init__(self, cfg): | |
super(phase_criterion, self).__init__() | |
self.cfg = cfg | |
self.l1Loss = torch.nn.L1Loss(reduction="mean") | |
self.l2Loss = torch.nn.MSELoss(reduction="mean") | |
self.relu = torch.nn.ReLU() | |
def __call__(self, phase_gt, phase_pred): | |
n_fft = self.cfg.preprocess.n_fft | |
frames = phase_gt.size()[-1] | |
GD_matrix = ( | |
torch.triu(torch.ones(n_fft // 2 + 1, n_fft // 2 + 1), diagonal=1) | |
- torch.triu(torch.ones(n_fft // 2 + 1, n_fft // 2 + 1), diagonal=2) | |
- torch.eye(n_fft // 2 + 1) | |
) | |
GD_matrix = GD_matrix.to(phase_pred.device) | |
GD_r = torch.matmul(phase_gt.permute(0, 2, 1), GD_matrix) | |
GD_g = torch.matmul(phase_pred.permute(0, 2, 1), GD_matrix) | |
PTD_matrix = ( | |
torch.triu(torch.ones(frames, frames), diagonal=1) | |
- torch.triu(torch.ones(frames, frames), diagonal=2) | |
- torch.eye(frames) | |
) | |
PTD_matrix = PTD_matrix.to(phase_pred.device) | |
PTD_r = torch.matmul(phase_gt, PTD_matrix) | |
PTD_g = torch.matmul(phase_pred, PTD_matrix) | |
IP_loss = torch.mean(-torch.cos(phase_gt - phase_pred)) | |
GD_loss = torch.mean(-torch.cos(GD_r - GD_g)) | |
PTD_loss = torch.mean(-torch.cos(PTD_r - PTD_g)) | |
return 100 * (IP_loss + GD_loss + PTD_loss) | |
class amplitude_criterion(torch.nn.Module): | |
def __init__(self, cfg): | |
super(amplitude_criterion, self).__init__() | |
self.cfg = cfg | |
self.l1Loss = torch.nn.L1Loss(reduction="mean") | |
self.l2Loss = torch.nn.MSELoss(reduction="mean") | |
self.relu = torch.nn.ReLU() | |
def __call__(self, log_amplitude_gt, log_amplitude_pred): | |
amplitude_loss = self.l2Loss(log_amplitude_gt, log_amplitude_pred) | |
return 45 * amplitude_loss | |
class consistency_criterion(torch.nn.Module): | |
def __init__(self, cfg): | |
super(consistency_criterion, self).__init__() | |
self.cfg = cfg | |
self.l1Loss = torch.nn.L1Loss(reduction="mean") | |
self.l2Loss = torch.nn.MSELoss(reduction="mean") | |
self.relu = torch.nn.ReLU() | |
def __call__( | |
self, | |
rea_gt, | |
rea_pred, | |
rea_pred_final, | |
imag_gt, | |
imag_pred, | |
imag_pred_final, | |
): | |
C_loss = torch.mean( | |
torch.mean( | |
(rea_pred - rea_pred_final) ** 2 | |
+ (imag_pred - imag_pred_final) ** 2, | |
(1, 2), | |
) | |
) | |
L_R = self.l1Loss(rea_gt, rea_pred) | |
L_I = self.l1Loss(imag_gt, imag_pred) | |
return 20 * (C_loss + 2.25 * (L_R + L_I)) | |
criterions = dict() | |
for key in self.cfg.train.criterions: | |
if key == "feature": | |
criterions["feature"] = feature_criterion(self.cfg) | |
elif key == "discriminator": | |
criterions["discriminator"] = discriminator_criterion(self.cfg) | |
elif key == "generator": | |
criterions["generator"] = generator_criterion(self.cfg) | |
elif key == "mel": | |
criterions["mel"] = mel_criterion(self.cfg) | |
elif key == "wav": | |
criterions["wav"] = wav_criterion(self.cfg) | |
elif key == "phase": | |
criterions["phase"] = phase_criterion(self.cfg) | |
elif key == "amplitude": | |
criterions["amplitude"] = amplitude_criterion(self.cfg) | |
elif key == "consistency": | |
criterions["consistency"] = consistency_criterion(self.cfg) | |
else: | |
raise NotImplementedError | |
return criterions | |
def _build_model(self): | |
generator = supported_generators[self.cfg.model.generator](self.cfg) | |
discriminators = dict() | |
for key in self.cfg.model.discriminators: | |
discriminators[key] = supported_discriminators[key](self.cfg) | |
return generator, discriminators | |
def _build_optimizer(self): | |
optimizer_params_generator = [dict(params=self.generator.parameters())] | |
generator_optimizer = AdamW( | |
optimizer_params_generator, | |
lr=self.cfg.train.adamw.lr, | |
betas=(self.cfg.train.adamw.adam_b1, self.cfg.train.adamw.adam_b2), | |
) | |
optimizer_params_discriminator = [] | |
for discriminator in self.discriminators.keys(): | |
optimizer_params_discriminator.append( | |
dict(params=self.discriminators[discriminator].parameters()) | |
) | |
discriminator_optimizer = AdamW( | |
optimizer_params_discriminator, | |
lr=self.cfg.train.adamw.lr, | |
betas=(self.cfg.train.adamw.adam_b1, self.cfg.train.adamw.adam_b2), | |
) | |
return generator_optimizer, discriminator_optimizer | |
def _build_scheduler(self): | |
discriminator_scheduler = ExponentialLR( | |
self.discriminator_optimizer, | |
gamma=self.cfg.train.exponential_lr.lr_decay, | |
last_epoch=self.epoch - 1, | |
) | |
generator_scheduler = ExponentialLR( | |
self.generator_optimizer, | |
gamma=self.cfg.train.exponential_lr.lr_decay, | |
last_epoch=self.epoch - 1, | |
) | |
return generator_scheduler, discriminator_scheduler | |
def train_loop(self): | |
"""Training process""" | |
self.accelerator.wait_for_everyone() | |
# Dump config | |
if self.accelerator.is_main_process: | |
self._dump_cfg(self.config_save_path) | |
self.generator.train() | |
for key in self.discriminators.keys(): | |
self.discriminators[key].train() | |
self.generator_optimizer.zero_grad() | |
self.discriminator_optimizer.zero_grad() | |
# Sync and start training | |
self.accelerator.wait_for_everyone() | |
while self.epoch < self.max_epoch: | |
self.logger.info("\n") | |
self.logger.info("-" * 32) | |
self.logger.info("Epoch {}: ".format(self.epoch)) | |
# Train and Validate | |
train_total_loss, train_losses = self._train_epoch() | |
for key, loss in train_losses.items(): | |
self.logger.info(" |- Train/{} Loss: {:.6f}".format(key, loss)) | |
self.accelerator.log( | |
{"Epoch/Train {} Loss".format(key): loss}, | |
step=self.epoch, | |
) | |
valid_total_loss, valid_losses = self._valid_epoch() | |
for key, loss in valid_losses.items(): | |
self.logger.info(" |- Valid/{} Loss: {:.6f}".format(key, loss)) | |
self.accelerator.log( | |
{"Epoch/Valid {} Loss".format(key): loss}, | |
step=self.epoch, | |
) | |
self.accelerator.log( | |
{ | |
"Epoch/Train Total Loss": train_total_loss, | |
"Epoch/Valid Total Loss": valid_total_loss, | |
}, | |
step=self.epoch, | |
) | |
# Update scheduler | |
self.accelerator.wait_for_everyone() | |
self.generator_scheduler.step() | |
self.discriminator_scheduler.step() | |
# Check save checkpoint interval | |
run_eval = False | |
if self.accelerator.is_main_process: | |
save_checkpoint = False | |
for i, num in enumerate(self.save_checkpoint_stride): | |
if self.epoch % num == 0: | |
save_checkpoint = True | |
run_eval |= self.run_eval[i] | |
# Save checkpoints | |
self.accelerator.wait_for_everyone() | |
if self.accelerator.is_main_process and save_checkpoint: | |
path = os.path.join( | |
self.checkpoint_dir, | |
"epoch-{:04d}_step-{:07d}_loss-{:.6f}".format( | |
self.epoch, self.step, valid_total_loss | |
), | |
) | |
self.accelerator.save_state(path) | |
json.dump( | |
self.checkpoints_path, | |
open(os.path.join(path, "ckpts.json"), "w"), | |
ensure_ascii=False, | |
indent=4, | |
) | |
# Save eval audios | |
self.accelerator.wait_for_everyone() | |
if self.accelerator.is_main_process and run_eval: | |
for i in range(len(self.valid_dataloader.dataset.eval_audios)): | |
if self.cfg.preprocess.use_frame_pitch: | |
eval_audio = self._inference( | |
self.valid_dataloader.dataset.eval_mels[i], | |
eval_pitch=self.valid_dataloader.dataset.eval_pitchs[i], | |
use_pitch=True, | |
) | |
else: | |
eval_audio = self._inference( | |
self.valid_dataloader.dataset.eval_mels[i] | |
) | |
path = os.path.join( | |
self.checkpoint_dir, | |
"epoch-{:04d}_step-{:07d}_loss-{:.6f}_eval_audio_{}.wav".format( | |
self.epoch, | |
self.step, | |
valid_total_loss, | |
self.valid_dataloader.dataset.eval_dataset_names[i], | |
), | |
) | |
path_gt = os.path.join( | |
self.checkpoint_dir, | |
"epoch-{:04d}_step-{:07d}_loss-{:.6f}_eval_audio_{}_gt.wav".format( | |
self.epoch, | |
self.step, | |
valid_total_loss, | |
self.valid_dataloader.dataset.eval_dataset_names[i], | |
), | |
) | |
save_audio(path, eval_audio, self.cfg.preprocess.sample_rate) | |
save_audio( | |
path_gt, | |
self.valid_dataloader.dataset.eval_audios[i], | |
self.cfg.preprocess.sample_rate, | |
) | |
self.accelerator.wait_for_everyone() | |
self.epoch += 1 | |
# Finish training | |
self.accelerator.wait_for_everyone() | |
path = os.path.join( | |
self.checkpoint_dir, | |
"epoch-{:04d}_step-{:07d}_loss-{:.6f}".format( | |
self.epoch, self.step, valid_total_loss | |
), | |
) | |
self.accelerator.save_state(path) | |
def _train_epoch(self): | |
"""Training epoch. Should return average loss of a batch (sample) over | |
one epoch. See ``train_loop`` for usage. | |
""" | |
self.generator.train() | |
for key, _ in self.discriminators.items(): | |
self.discriminators[key].train() | |
epoch_losses: dict = {} | |
epoch_total_loss: int = 0 | |
for batch in tqdm( | |
self.train_dataloader, | |
desc=f"Training Epoch {self.epoch}", | |
unit="batch", | |
colour="GREEN", | |
leave=False, | |
dynamic_ncols=True, | |
smoothing=0.04, | |
disable=not self.accelerator.is_main_process, | |
): | |
# Get losses | |
total_loss, losses = self._train_step(batch) | |
self.batch_count += 1 | |
# Log info | |
if self.batch_count % self.cfg.train.gradient_accumulation_step == 0: | |
self.accelerator.log( | |
{ | |
"Step/Generator Learning Rate": self.generator_optimizer.param_groups[ | |
0 | |
][ | |
"lr" | |
], | |
"Step/Discriminator Learning Rate": self.discriminator_optimizer.param_groups[ | |
0 | |
][ | |
"lr" | |
], | |
}, | |
step=self.step, | |
) | |
for key, _ in losses.items(): | |
self.accelerator.log( | |
{ | |
"Step/Train {} Loss".format(key): losses[key], | |
}, | |
step=self.step, | |
) | |
if not epoch_losses: | |
epoch_losses = losses | |
else: | |
for key, value in losses.items(): | |
epoch_losses[key] += value | |
epoch_total_loss += total_loss | |
self.step += 1 | |
# Get and log total losses | |
self.accelerator.wait_for_everyone() | |
epoch_total_loss = ( | |
epoch_total_loss | |
/ len(self.train_dataloader) | |
* self.cfg.train.gradient_accumulation_step | |
) | |
for key in epoch_losses.keys(): | |
epoch_losses[key] = ( | |
epoch_losses[key] | |
/ len(self.train_dataloader) | |
* self.cfg.train.gradient_accumulation_step | |
) | |
return epoch_total_loss, epoch_losses | |
def _train_step(self, data): | |
"""Training forward step. Should return average loss of a sample over | |
one batch. Provoke ``_forward_step`` is recommended except for special case. | |
See ``_train_epoch`` for usage. | |
""" | |
# Init losses | |
train_losses = {} | |
total_loss = 0 | |
generator_losses = {} | |
generator_total_loss = 0 | |
discriminator_losses = {} | |
discriminator_total_loss = 0 | |
# Use input feature to get predictions | |
mel_input = data["mel"] | |
audio_gt = data["audio"] | |
if self.cfg.preprocess.extract_amplitude_phase: | |
logamp_gt = data["logamp"] | |
pha_gt = data["pha"] | |
rea_gt = data["rea"] | |
imag_gt = data["imag"] | |
if self.cfg.preprocess.use_frame_pitch: | |
pitch_input = data["frame_pitch"] | |
if self.cfg.preprocess.use_frame_pitch: | |
pitch_input = pitch_input.float() | |
audio_pred = self.generator.forward(mel_input, pitch_input) | |
elif self.cfg.preprocess.extract_amplitude_phase: | |
( | |
logamp_pred, | |
pha_pred, | |
rea_pred, | |
imag_pred, | |
audio_pred, | |
) = self.generator.forward(mel_input) | |
from utils.mel import amplitude_phase_spectrum | |
_, _, rea_pred_final, imag_pred_final = amplitude_phase_spectrum( | |
audio_pred.squeeze(1), self.cfg.preprocess | |
) | |
else: | |
audio_pred = self.generator.forward(mel_input) | |
# Calculate and BP Discriminator losses | |
self.discriminator_optimizer.zero_grad() | |
for key, _ in self.discriminators.items(): | |
y_r, y_g, _, _ = self.discriminators[key].forward( | |
audio_gt.unsqueeze(1), audio_pred.detach() | |
) | |
( | |
discriminator_losses["{}_discriminator".format(key)], | |
_, | |
_, | |
) = self.criterions["discriminator"](y_r, y_g) | |
discriminator_total_loss += discriminator_losses[ | |
"{}_discriminator".format(key) | |
] | |
self.accelerator.backward(discriminator_total_loss) | |
self.discriminator_optimizer.step() | |
# Calculate and BP Generator losses | |
self.generator_optimizer.zero_grad() | |
for key, _ in self.discriminators.items(): | |
y_r, y_g, f_r, f_g = self.discriminators[key].forward( | |
audio_gt.unsqueeze(1), audio_pred | |
) | |
generator_losses["{}_feature".format(key)] = self.criterions["feature"]( | |
f_r, f_g | |
) | |
generator_losses["{}_generator".format(key)], _ = self.criterions[ | |
"generator" | |
](y_g) | |
generator_total_loss += generator_losses["{}_feature".format(key)] | |
generator_total_loss += generator_losses["{}_generator".format(key)] | |
if "mel" in self.criterions.keys(): | |
generator_losses["mel"] = self.criterions["mel"](audio_gt, audio_pred) | |
generator_total_loss += generator_losses["mel"] | |
if "wav" in self.criterions.keys(): | |
generator_losses["wav"] = self.criterions["wav"](audio_gt, audio_pred) | |
generator_total_loss += generator_losses["wav"] | |
if "amplitude" in self.criterions.keys(): | |
generator_losses["amplitude"] = self.criterions["amplitude"]( | |
logamp_gt, logamp_pred | |
) | |
generator_total_loss += generator_losses["amplitude"] | |
if "phase" in self.criterions.keys(): | |
generator_losses["phase"] = self.criterions["phase"](pha_gt, pha_pred) | |
generator_total_loss += generator_losses["phase"] | |
if "consistency" in self.criterions.keys(): | |
generator_losses["consistency"] = self.criterions["consistency"]( | |
rea_gt, rea_pred, rea_pred_final, imag_gt, imag_pred, imag_pred_final | |
) | |
generator_total_loss += generator_losses["consistency"] | |
self.accelerator.backward(generator_total_loss) | |
self.generator_optimizer.step() | |
# Get the total losses | |
total_loss = discriminator_total_loss + generator_total_loss | |
train_losses.update(discriminator_losses) | |
train_losses.update(generator_losses) | |
for key, _ in train_losses.items(): | |
train_losses[key] = train_losses[key].item() | |
return total_loss.item(), train_losses | |
def _valid_epoch(self): | |
"""Testing epoch. Should return average loss of a batch (sample) over | |
one epoch. See ``train_loop`` for usage. | |
""" | |
self.generator.eval() | |
for key, _ in self.discriminators.items(): | |
self.discriminators[key].eval() | |
epoch_losses: dict = {} | |
epoch_total_loss: int = 0 | |
for batch in tqdm( | |
self.valid_dataloader, | |
desc=f"Validating Epoch {self.epoch}", | |
unit="batch", | |
colour="GREEN", | |
leave=False, | |
dynamic_ncols=True, | |
smoothing=0.04, | |
disable=not self.accelerator.is_main_process, | |
): | |
# Get losses | |
total_loss, losses = self._valid_step(batch) | |
# Log info | |
for key, _ in losses.items(): | |
self.accelerator.log( | |
{ | |
"Step/Valid {} Loss".format(key): losses[key], | |
}, | |
step=self.step, | |
) | |
if not epoch_losses: | |
epoch_losses = losses | |
else: | |
for key, value in losses.items(): | |
epoch_losses[key] += value | |
epoch_total_loss += total_loss | |
# Get and log total losses | |
self.accelerator.wait_for_everyone() | |
epoch_total_loss = epoch_total_loss / len(self.valid_dataloader) | |
for key in epoch_losses.keys(): | |
epoch_losses[key] = epoch_losses[key] / len(self.valid_dataloader) | |
return epoch_total_loss, epoch_losses | |
def _valid_step(self, data): | |
"""Testing forward step. Should return average loss of a sample over | |
one batch. Provoke ``_forward_step`` is recommended except for special case. | |
See ``_test_epoch`` for usage. | |
""" | |
# Init losses | |
valid_losses = {} | |
total_loss = 0 | |
generator_losses = {} | |
generator_total_loss = 0 | |
discriminator_losses = {} | |
discriminator_total_loss = 0 | |
# Use feature inputs to get the predicted audio | |
mel_input = data["mel"] | |
audio_gt = data["audio"] | |
if self.cfg.preprocess.extract_amplitude_phase: | |
logamp_gt = data["logamp"] | |
pha_gt = data["pha"] | |
rea_gt = data["rea"] | |
imag_gt = data["imag"] | |
if self.cfg.preprocess.use_frame_pitch: | |
pitch_input = data["frame_pitch"] | |
if self.cfg.preprocess.use_frame_pitch: | |
pitch_input = pitch_input.float() | |
audio_pred = self.generator.forward(mel_input, pitch_input) | |
elif self.cfg.preprocess.extract_amplitude_phase: | |
( | |
logamp_pred, | |
pha_pred, | |
rea_pred, | |
imag_pred, | |
audio_pred, | |
) = self.generator.forward(mel_input) | |
from utils.mel import amplitude_phase_spectrum | |
_, _, rea_pred_final, imag_pred_final = amplitude_phase_spectrum( | |
audio_pred.squeeze(1), self.cfg.preprocess | |
) | |
else: | |
audio_pred = self.generator.forward(mel_input) | |
# Get Discriminator losses | |
for key, _ in self.discriminators.items(): | |
y_r, y_g, _, _ = self.discriminators[key].forward( | |
audio_gt.unsqueeze(1), audio_pred | |
) | |
( | |
discriminator_losses["{}_discriminator".format(key)], | |
_, | |
_, | |
) = self.criterions["discriminator"](y_r, y_g) | |
discriminator_total_loss += discriminator_losses[ | |
"{}_discriminator".format(key) | |
] | |
for key, _ in self.discriminators.items(): | |
y_r, y_g, f_r, f_g = self.discriminators[key].forward( | |
audio_gt.unsqueeze(1), audio_pred | |
) | |
generator_losses["{}_feature".format(key)] = self.criterions["feature"]( | |
f_r, f_g | |
) | |
generator_losses["{}_generator".format(key)], _ = self.criterions[ | |
"generator" | |
](y_g) | |
generator_total_loss += generator_losses["{}_feature".format(key)] | |
generator_total_loss += generator_losses["{}_generator".format(key)] | |
if "mel" in self.criterions.keys(): | |
generator_losses["mel"] = self.criterions["mel"](audio_gt, audio_pred) | |
generator_total_loss += generator_losses["mel"] | |
if "mel" in self.criterions.keys(): | |
generator_losses["mel"] = self.criterions["mel"](audio_gt, audio_pred) | |
generator_total_loss += generator_losses["mel"] | |
if "wav" in self.criterions.keys(): | |
generator_losses["wav"] = self.criterions["wav"](audio_gt, audio_pred) | |
generator_total_loss += generator_losses["wav"] | |
if "wav" in self.criterions.keys(): | |
generator_losses["wav"] = self.criterions["wav"](audio_gt, audio_pred) | |
generator_total_loss += generator_losses["wav"] | |
if "amplitude" in self.criterions.keys(): | |
generator_losses["amplitude"] = self.criterions["amplitude"]( | |
logamp_gt, logamp_pred | |
) | |
generator_total_loss += generator_losses["amplitude"] | |
if "phase" in self.criterions.keys(): | |
generator_losses["phase"] = self.criterions["phase"](pha_gt, pha_pred) | |
generator_total_loss += generator_losses["phase"] | |
if "consistency" in self.criterions.keys(): | |
generator_losses["consistency"] = self.criterions["consistency"]( | |
rea_gt, | |
rea_pred, | |
rea_pred_final, | |
imag_gt, | |
imag_pred, | |
imag_pred_final, | |
) | |
generator_total_loss += generator_losses["consistency"] | |
total_loss = discriminator_total_loss + generator_total_loss | |
valid_losses.update(discriminator_losses) | |
valid_losses.update(generator_losses) | |
for item in valid_losses: | |
valid_losses[item] = valid_losses[item].item() | |
return total_loss.item(), valid_losses | |
def _inference(self, eval_mel, eval_pitch=None, use_pitch=False): | |
"""Inference during training for test audios.""" | |
if use_pitch: | |
eval_pitch = align_length(eval_pitch, eval_mel.shape[1]) | |
eval_audio = vocoder_inference( | |
self.cfg, | |
self.generator, | |
torch.from_numpy(eval_mel).unsqueeze(0), | |
f0s=torch.from_numpy(eval_pitch).unsqueeze(0).float(), | |
device=next(self.generator.parameters()).device, | |
).squeeze(0) | |
else: | |
eval_audio = vocoder_inference( | |
self.cfg, | |
self.generator, | |
torch.from_numpy(eval_mel).unsqueeze(0), | |
device=next(self.generator.parameters()).device, | |
).squeeze(0) | |
return eval_audio | |
def _load_model(self, checkpoint_dir, checkpoint_path=None, resume_type="resume"): | |
"""Load model from checkpoint. If checkpoint_path is None, it will | |
load the latest checkpoint in checkpoint_dir. If checkpoint_path is not | |
None, it will load the checkpoint specified by checkpoint_path. **Only use this | |
method after** ``accelerator.prepare()``. | |
""" | |
if checkpoint_path is None: | |
ls = [str(i) for i in Path(checkpoint_dir).glob("*")] | |
ls.sort(key=lambda x: int(x.split("_")[-3].split("-")[-1]), reverse=True) | |
checkpoint_path = ls[0] | |
if resume_type == "resume": | |
self.accelerator.load_state(checkpoint_path) | |
self.epoch = int(checkpoint_path.split("_")[-3].split("-")[-1]) + 1 | |
self.step = int(checkpoint_path.split("_")[-2].split("-")[-1]) + 1 | |
elif resume_type == "finetune": | |
accelerate.load_checkpoint_and_dispatch( | |
self.accelerator.unwrap_model(self.generator), | |
os.path.join(checkpoint_path, "pytorch_model.bin"), | |
) | |
for key, _ in self.discriminators.items(): | |
accelerate.load_checkpoint_and_dispatch( | |
self.accelerator.unwrap_model(self.discriminators[key]), | |
os.path.join(checkpoint_path, "pytorch_model.bin"), | |
) | |
self.logger.info("Load model weights for finetune SUCCESS!") | |
else: | |
raise ValueError("Unsupported resume type: {}".format(resume_type)) | |
return checkpoint_path | |
def _count_parameters(self): | |
result = sum(p.numel() for p in self.generator.parameters()) | |
for _, discriminator in self.discriminators.items(): | |
result += sum(p.numel() for p in discriminator.parameters()) | |
return result | |