Spaces:
Running
on
Zero
Running
on
Zero
File size: 43,238 Bytes
c968fc3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 |
# Copyright (c) 2023 Amphion.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import os
import sys
import time
import torch
import json
import itertools
import accelerate
import torch.distributed as dist
import torch.nn.functional as F
from tqdm import tqdm
from torch.nn.parallel import DistributedDataParallel
from torch.utils.data import DataLoader
from torch.utils.data.distributed import DistributedSampler
from torch.utils.tensorboard import SummaryWriter
from torch.optim import AdamW
from torch.optim.lr_scheduler import ExponentialLR
from librosa.filters import mel as librosa_mel_fn
from accelerate.logging import get_logger
from pathlib import Path
from utils.io import save_audio
from utils.data_utils import *
from utils.util import (
Logger,
ValueWindow,
remove_older_ckpt,
set_all_random_seed,
save_config,
)
from utils.mel import extract_mel_features
from models.vocoders.vocoder_trainer import VocoderTrainer
from models.vocoders.gan.gan_vocoder_dataset import (
GANVocoderDataset,
GANVocoderCollator,
)
from models.vocoders.gan.generator.bigvgan import BigVGAN
from models.vocoders.gan.generator.hifigan import HiFiGAN
from models.vocoders.gan.generator.melgan import MelGAN
from models.vocoders.gan.generator.nsfhifigan import NSFHiFiGAN
from models.vocoders.gan.generator.apnet import APNet
from models.vocoders.gan.discriminator.mpd import MultiPeriodDiscriminator
from models.vocoders.gan.discriminator.mrd import MultiResolutionDiscriminator
from models.vocoders.gan.discriminator.mssbcqtd import MultiScaleSubbandCQTDiscriminator
from models.vocoders.gan.discriminator.msd import MultiScaleDiscriminator
from models.vocoders.gan.discriminator.msstftd import MultiScaleSTFTDiscriminator
from models.vocoders.gan.gan_vocoder_inference import vocoder_inference
supported_generators = {
"bigvgan": BigVGAN,
"hifigan": HiFiGAN,
"melgan": MelGAN,
"nsfhifigan": NSFHiFiGAN,
"apnet": APNet,
}
supported_discriminators = {
"mpd": MultiPeriodDiscriminator,
"msd": MultiScaleDiscriminator,
"mrd": MultiResolutionDiscriminator,
"msstftd": MultiScaleSTFTDiscriminator,
"mssbcqtd": MultiScaleSubbandCQTDiscriminator,
}
class GANVocoderTrainer(VocoderTrainer):
def __init__(self, args, cfg):
super().__init__()
self.args = args
self.cfg = cfg
cfg.exp_name = args.exp_name
# Init accelerator
self._init_accelerator()
self.accelerator.wait_for_everyone()
# Init logger
with self.accelerator.main_process_first():
self.logger = get_logger(args.exp_name, log_level=args.log_level)
self.logger.info("=" * 56)
self.logger.info("||\t\t" + "New training process started." + "\t\t||")
self.logger.info("=" * 56)
self.logger.info("\n")
self.logger.debug(f"Using {args.log_level.upper()} logging level.")
self.logger.info(f"Experiment name: {args.exp_name}")
self.logger.info(f"Experiment directory: {self.exp_dir}")
self.checkpoint_dir = os.path.join(self.exp_dir, "checkpoint")
if self.accelerator.is_main_process:
os.makedirs(self.checkpoint_dir, exist_ok=True)
self.logger.debug(f"Checkpoint directory: {self.checkpoint_dir}")
# Init training status
self.batch_count: int = 0
self.step: int = 0
self.epoch: int = 0
self.max_epoch = (
self.cfg.train.max_epoch if self.cfg.train.max_epoch > 0 else float("inf")
)
self.logger.info(
"Max epoch: {}".format(
self.max_epoch if self.max_epoch < float("inf") else "Unlimited"
)
)
# Check potential erorrs
if self.accelerator.is_main_process:
self._check_basic_configs()
self.save_checkpoint_stride = self.cfg.train.save_checkpoint_stride
self.checkpoints_path = [
[] for _ in range(len(self.save_checkpoint_stride))
]
self.run_eval = self.cfg.train.run_eval
# Set random seed
with self.accelerator.main_process_first():
start = time.monotonic_ns()
self._set_random_seed(self.cfg.train.random_seed)
end = time.monotonic_ns()
self.logger.debug(
f"Setting random seed done in {(end - start) / 1e6:.2f}ms"
)
self.logger.debug(f"Random seed: {self.cfg.train.random_seed}")
# Build dataloader
with self.accelerator.main_process_first():
self.logger.info("Building dataset...")
start = time.monotonic_ns()
self.train_dataloader, self.valid_dataloader = self._build_dataloader()
end = time.monotonic_ns()
self.logger.info(f"Building dataset done in {(end - start) / 1e6:.2f}ms")
# Build model
with self.accelerator.main_process_first():
self.logger.info("Building model...")
start = time.monotonic_ns()
self.generator, self.discriminators = self._build_model()
end = time.monotonic_ns()
self.logger.debug(self.generator)
for _, discriminator in self.discriminators.items():
self.logger.debug(discriminator)
self.logger.info(f"Building model done in {(end - start) / 1e6:.2f}ms")
self.logger.info(f"Model parameters: {self._count_parameters()/1e6:.2f}M")
# Build optimizers and schedulers
with self.accelerator.main_process_first():
self.logger.info("Building optimizer and scheduler...")
start = time.monotonic_ns()
(
self.generator_optimizer,
self.discriminator_optimizer,
) = self._build_optimizer()
(
self.generator_scheduler,
self.discriminator_scheduler,
) = self._build_scheduler()
end = time.monotonic_ns()
self.logger.info(
f"Building optimizer and scheduler done in {(end - start) / 1e6:.2f}ms"
)
# Accelerator preparing
self.logger.info("Initializing accelerate...")
start = time.monotonic_ns()
(
self.train_dataloader,
self.valid_dataloader,
self.generator,
self.generator_optimizer,
self.discriminator_optimizer,
self.generator_scheduler,
self.discriminator_scheduler,
) = self.accelerator.prepare(
self.train_dataloader,
self.valid_dataloader,
self.generator,
self.generator_optimizer,
self.discriminator_optimizer,
self.generator_scheduler,
self.discriminator_scheduler,
)
for key, discriminator in self.discriminators.items():
self.discriminators[key] = self.accelerator.prepare_model(discriminator)
end = time.monotonic_ns()
self.logger.info(f"Initializing accelerate done in {(end - start) / 1e6:.2f}ms")
# Build criterions
with self.accelerator.main_process_first():
self.logger.info("Building criterion...")
start = time.monotonic_ns()
self.criterions = self._build_criterion()
end = time.monotonic_ns()
self.logger.info(f"Building criterion done in {(end - start) / 1e6:.2f}ms")
# Resume checkpoints
with self.accelerator.main_process_first():
if args.resume_type:
self.logger.info("Resuming from checkpoint...")
start = time.monotonic_ns()
ckpt_path = Path(args.checkpoint)
if self._is_valid_pattern(ckpt_path.parts[-1]):
ckpt_path = self._load_model(
None, args.checkpoint, args.resume_type
)
else:
ckpt_path = self._load_model(
args.checkpoint, resume_type=args.resume_type
)
end = time.monotonic_ns()
self.logger.info(
f"Resuming from checkpoint done in {(end - start) / 1e6:.2f}ms"
)
self.checkpoints_path = json.load(
open(os.path.join(ckpt_path, "ckpts.json"), "r")
)
self.checkpoint_dir = os.path.join(self.exp_dir, "checkpoint")
if self.accelerator.is_main_process:
os.makedirs(self.checkpoint_dir, exist_ok=True)
self.logger.debug(f"Checkpoint directory: {self.checkpoint_dir}")
# Save config
self.config_save_path = os.path.join(self.exp_dir, "args.json")
def _build_dataset(self):
return GANVocoderDataset, GANVocoderCollator
def _build_criterion(self):
class feature_criterion(torch.nn.Module):
def __init__(self, cfg):
super(feature_criterion, self).__init__()
self.cfg = cfg
self.l1Loss = torch.nn.L1Loss(reduction="mean")
self.l2Loss = torch.nn.MSELoss(reduction="mean")
self.relu = torch.nn.ReLU()
def __call__(self, fmap_r, fmap_g):
loss = 0
if self.cfg.model.generator in [
"hifigan",
"nsfhifigan",
"bigvgan",
"apnet",
]:
for dr, dg in zip(fmap_r, fmap_g):
for rl, gl in zip(dr, dg):
loss += torch.mean(torch.abs(rl - gl))
loss = loss * 2
elif self.cfg.model.generator in ["melgan"]:
for dr, dg in zip(fmap_r, fmap_g):
for rl, gl in zip(dr, dg):
loss += self.l1Loss(rl, gl)
loss = loss * 10
elif self.cfg.model.generator in ["codec"]:
for dr, dg in zip(fmap_r, fmap_g):
for rl, gl in zip(dr, dg):
loss = loss + self.l1Loss(rl, gl) / torch.mean(
torch.abs(rl)
)
KL_scale = len(fmap_r) * len(fmap_r[0])
loss = 3 * loss / KL_scale
else:
raise NotImplementedError
return loss
class discriminator_criterion(torch.nn.Module):
def __init__(self, cfg):
super(discriminator_criterion, self).__init__()
self.cfg = cfg
self.l1Loss = torch.nn.L1Loss(reduction="mean")
self.l2Loss = torch.nn.MSELoss(reduction="mean")
self.relu = torch.nn.ReLU()
def __call__(self, disc_real_outputs, disc_generated_outputs):
loss = 0
r_losses = []
g_losses = []
if self.cfg.model.generator in [
"hifigan",
"nsfhifigan",
"bigvgan",
"apnet",
]:
for dr, dg in zip(disc_real_outputs, disc_generated_outputs):
r_loss = torch.mean((1 - dr) ** 2)
g_loss = torch.mean(dg**2)
loss += r_loss + g_loss
r_losses.append(r_loss.item())
g_losses.append(g_loss.item())
elif self.cfg.model.generator in ["melgan"]:
for dr, dg in zip(disc_real_outputs, disc_generated_outputs):
r_loss = torch.mean(self.relu(1 - dr))
g_loss = torch.mean(self.relu(1 + dg))
loss = loss + r_loss + g_loss
r_losses.append(r_loss.item())
g_losses.append(g_loss.item())
elif self.cfg.model.generator in ["codec"]:
for dr, dg in zip(disc_real_outputs, disc_generated_outputs):
r_loss = torch.mean(self.relu(1 - dr))
g_loss = torch.mean(self.relu(1 + dg))
loss = loss + r_loss + g_loss
r_losses.append(r_loss.item())
g_losses.append(g_loss.item())
loss = loss / len(disc_real_outputs)
else:
raise NotImplementedError
return loss, r_losses, g_losses
class generator_criterion(torch.nn.Module):
def __init__(self, cfg):
super(generator_criterion, self).__init__()
self.cfg = cfg
self.l1Loss = torch.nn.L1Loss(reduction="mean")
self.l2Loss = torch.nn.MSELoss(reduction="mean")
self.relu = torch.nn.ReLU()
def __call__(self, disc_outputs):
loss = 0
gen_losses = []
if self.cfg.model.generator in [
"hifigan",
"nsfhifigan",
"bigvgan",
"apnet",
]:
for dg in disc_outputs:
l = torch.mean((1 - dg) ** 2)
gen_losses.append(l)
loss += l
elif self.cfg.model.generator in ["melgan"]:
for dg in disc_outputs:
l = -torch.mean(dg)
gen_losses.append(l)
loss += l
elif self.cfg.model.generator in ["codec"]:
for dg in disc_outputs:
l = torch.mean(self.relu(1 - dg)) / len(disc_outputs)
gen_losses.append(l)
loss += l
else:
raise NotImplementedError
return loss, gen_losses
class mel_criterion(torch.nn.Module):
def __init__(self, cfg):
super(mel_criterion, self).__init__()
self.cfg = cfg
self.l1Loss = torch.nn.L1Loss(reduction="mean")
self.l2Loss = torch.nn.MSELoss(reduction="mean")
self.relu = torch.nn.ReLU()
def __call__(self, y_gt, y_pred):
loss = 0
if self.cfg.model.generator in [
"hifigan",
"nsfhifigan",
"bigvgan",
"melgan",
"codec",
"apnet",
]:
y_gt_mel = extract_mel_features(y_gt, self.cfg.preprocess)
y_pred_mel = extract_mel_features(
y_pred.squeeze(1), self.cfg.preprocess
)
loss = self.l1Loss(y_gt_mel, y_pred_mel) * 45
else:
raise NotImplementedError
return loss
class wav_criterion(torch.nn.Module):
def __init__(self, cfg):
super(wav_criterion, self).__init__()
self.cfg = cfg
self.l1Loss = torch.nn.L1Loss(reduction="mean")
self.l2Loss = torch.nn.MSELoss(reduction="mean")
self.relu = torch.nn.ReLU()
def __call__(self, y_gt, y_pred):
loss = 0
if self.cfg.model.generator in [
"hifigan",
"nsfhifigan",
"bigvgan",
"apnet",
]:
loss = self.l2Loss(y_gt, y_pred.squeeze(1)) * 100
elif self.cfg.model.generator in ["melgan"]:
loss = self.l1Loss(y_gt, y_pred.squeeze(1)) / 10
elif self.cfg.model.generator in ["codec"]:
loss = self.l1Loss(y_gt, y_pred.squeeze(1)) + self.l2Loss(
y_gt, y_pred.squeeze(1)
)
loss /= 10
else:
raise NotImplementedError
return loss
class phase_criterion(torch.nn.Module):
def __init__(self, cfg):
super(phase_criterion, self).__init__()
self.cfg = cfg
self.l1Loss = torch.nn.L1Loss(reduction="mean")
self.l2Loss = torch.nn.MSELoss(reduction="mean")
self.relu = torch.nn.ReLU()
def __call__(self, phase_gt, phase_pred):
n_fft = self.cfg.preprocess.n_fft
frames = phase_gt.size()[-1]
GD_matrix = (
torch.triu(torch.ones(n_fft // 2 + 1, n_fft // 2 + 1), diagonal=1)
- torch.triu(torch.ones(n_fft // 2 + 1, n_fft // 2 + 1), diagonal=2)
- torch.eye(n_fft // 2 + 1)
)
GD_matrix = GD_matrix.to(phase_pred.device)
GD_r = torch.matmul(phase_gt.permute(0, 2, 1), GD_matrix)
GD_g = torch.matmul(phase_pred.permute(0, 2, 1), GD_matrix)
PTD_matrix = (
torch.triu(torch.ones(frames, frames), diagonal=1)
- torch.triu(torch.ones(frames, frames), diagonal=2)
- torch.eye(frames)
)
PTD_matrix = PTD_matrix.to(phase_pred.device)
PTD_r = torch.matmul(phase_gt, PTD_matrix)
PTD_g = torch.matmul(phase_pred, PTD_matrix)
IP_loss = torch.mean(-torch.cos(phase_gt - phase_pred))
GD_loss = torch.mean(-torch.cos(GD_r - GD_g))
PTD_loss = torch.mean(-torch.cos(PTD_r - PTD_g))
return 100 * (IP_loss + GD_loss + PTD_loss)
class amplitude_criterion(torch.nn.Module):
def __init__(self, cfg):
super(amplitude_criterion, self).__init__()
self.cfg = cfg
self.l1Loss = torch.nn.L1Loss(reduction="mean")
self.l2Loss = torch.nn.MSELoss(reduction="mean")
self.relu = torch.nn.ReLU()
def __call__(self, log_amplitude_gt, log_amplitude_pred):
amplitude_loss = self.l2Loss(log_amplitude_gt, log_amplitude_pred)
return 45 * amplitude_loss
class consistency_criterion(torch.nn.Module):
def __init__(self, cfg):
super(consistency_criterion, self).__init__()
self.cfg = cfg
self.l1Loss = torch.nn.L1Loss(reduction="mean")
self.l2Loss = torch.nn.MSELoss(reduction="mean")
self.relu = torch.nn.ReLU()
def __call__(
self,
rea_gt,
rea_pred,
rea_pred_final,
imag_gt,
imag_pred,
imag_pred_final,
):
C_loss = torch.mean(
torch.mean(
(rea_pred - rea_pred_final) ** 2
+ (imag_pred - imag_pred_final) ** 2,
(1, 2),
)
)
L_R = self.l1Loss(rea_gt, rea_pred)
L_I = self.l1Loss(imag_gt, imag_pred)
return 20 * (C_loss + 2.25 * (L_R + L_I))
criterions = dict()
for key in self.cfg.train.criterions:
if key == "feature":
criterions["feature"] = feature_criterion(self.cfg)
elif key == "discriminator":
criterions["discriminator"] = discriminator_criterion(self.cfg)
elif key == "generator":
criterions["generator"] = generator_criterion(self.cfg)
elif key == "mel":
criterions["mel"] = mel_criterion(self.cfg)
elif key == "wav":
criterions["wav"] = wav_criterion(self.cfg)
elif key == "phase":
criterions["phase"] = phase_criterion(self.cfg)
elif key == "amplitude":
criterions["amplitude"] = amplitude_criterion(self.cfg)
elif key == "consistency":
criterions["consistency"] = consistency_criterion(self.cfg)
else:
raise NotImplementedError
return criterions
def _build_model(self):
generator = supported_generators[self.cfg.model.generator](self.cfg)
discriminators = dict()
for key in self.cfg.model.discriminators:
discriminators[key] = supported_discriminators[key](self.cfg)
return generator, discriminators
def _build_optimizer(self):
optimizer_params_generator = [dict(params=self.generator.parameters())]
generator_optimizer = AdamW(
optimizer_params_generator,
lr=self.cfg.train.adamw.lr,
betas=(self.cfg.train.adamw.adam_b1, self.cfg.train.adamw.adam_b2),
)
optimizer_params_discriminator = []
for discriminator in self.discriminators.keys():
optimizer_params_discriminator.append(
dict(params=self.discriminators[discriminator].parameters())
)
discriminator_optimizer = AdamW(
optimizer_params_discriminator,
lr=self.cfg.train.adamw.lr,
betas=(self.cfg.train.adamw.adam_b1, self.cfg.train.adamw.adam_b2),
)
return generator_optimizer, discriminator_optimizer
def _build_scheduler(self):
discriminator_scheduler = ExponentialLR(
self.discriminator_optimizer,
gamma=self.cfg.train.exponential_lr.lr_decay,
last_epoch=self.epoch - 1,
)
generator_scheduler = ExponentialLR(
self.generator_optimizer,
gamma=self.cfg.train.exponential_lr.lr_decay,
last_epoch=self.epoch - 1,
)
return generator_scheduler, discriminator_scheduler
def train_loop(self):
"""Training process"""
self.accelerator.wait_for_everyone()
# Dump config
if self.accelerator.is_main_process:
self._dump_cfg(self.config_save_path)
self.generator.train()
for key in self.discriminators.keys():
self.discriminators[key].train()
self.generator_optimizer.zero_grad()
self.discriminator_optimizer.zero_grad()
# Sync and start training
self.accelerator.wait_for_everyone()
while self.epoch < self.max_epoch:
self.logger.info("\n")
self.logger.info("-" * 32)
self.logger.info("Epoch {}: ".format(self.epoch))
# Train and Validate
train_total_loss, train_losses = self._train_epoch()
for key, loss in train_losses.items():
self.logger.info(" |- Train/{} Loss: {:.6f}".format(key, loss))
self.accelerator.log(
{"Epoch/Train {} Loss".format(key): loss},
step=self.epoch,
)
valid_total_loss, valid_losses = self._valid_epoch()
for key, loss in valid_losses.items():
self.logger.info(" |- Valid/{} Loss: {:.6f}".format(key, loss))
self.accelerator.log(
{"Epoch/Valid {} Loss".format(key): loss},
step=self.epoch,
)
self.accelerator.log(
{
"Epoch/Train Total Loss": train_total_loss,
"Epoch/Valid Total Loss": valid_total_loss,
},
step=self.epoch,
)
# Update scheduler
self.accelerator.wait_for_everyone()
self.generator_scheduler.step()
self.discriminator_scheduler.step()
# Check save checkpoint interval
run_eval = False
if self.accelerator.is_main_process:
save_checkpoint = False
for i, num in enumerate(self.save_checkpoint_stride):
if self.epoch % num == 0:
save_checkpoint = True
run_eval |= self.run_eval[i]
# Save checkpoints
self.accelerator.wait_for_everyone()
if self.accelerator.is_main_process and save_checkpoint:
path = os.path.join(
self.checkpoint_dir,
"epoch-{:04d}_step-{:07d}_loss-{:.6f}".format(
self.epoch, self.step, valid_total_loss
),
)
self.accelerator.save_state(path)
json.dump(
self.checkpoints_path,
open(os.path.join(path, "ckpts.json"), "w"),
ensure_ascii=False,
indent=4,
)
# Save eval audios
self.accelerator.wait_for_everyone()
if self.accelerator.is_main_process and run_eval:
for i in range(len(self.valid_dataloader.dataset.eval_audios)):
if self.cfg.preprocess.use_frame_pitch:
eval_audio = self._inference(
self.valid_dataloader.dataset.eval_mels[i],
eval_pitch=self.valid_dataloader.dataset.eval_pitchs[i],
use_pitch=True,
)
else:
eval_audio = self._inference(
self.valid_dataloader.dataset.eval_mels[i]
)
path = os.path.join(
self.checkpoint_dir,
"epoch-{:04d}_step-{:07d}_loss-{:.6f}_eval_audio_{}.wav".format(
self.epoch,
self.step,
valid_total_loss,
self.valid_dataloader.dataset.eval_dataset_names[i],
),
)
path_gt = os.path.join(
self.checkpoint_dir,
"epoch-{:04d}_step-{:07d}_loss-{:.6f}_eval_audio_{}_gt.wav".format(
self.epoch,
self.step,
valid_total_loss,
self.valid_dataloader.dataset.eval_dataset_names[i],
),
)
save_audio(path, eval_audio, self.cfg.preprocess.sample_rate)
save_audio(
path_gt,
self.valid_dataloader.dataset.eval_audios[i],
self.cfg.preprocess.sample_rate,
)
self.accelerator.wait_for_everyone()
self.epoch += 1
# Finish training
self.accelerator.wait_for_everyone()
path = os.path.join(
self.checkpoint_dir,
"epoch-{:04d}_step-{:07d}_loss-{:.6f}".format(
self.epoch, self.step, valid_total_loss
),
)
self.accelerator.save_state(path)
def _train_epoch(self):
"""Training epoch. Should return average loss of a batch (sample) over
one epoch. See ``train_loop`` for usage.
"""
self.generator.train()
for key, _ in self.discriminators.items():
self.discriminators[key].train()
epoch_losses: dict = {}
epoch_total_loss: int = 0
for batch in tqdm(
self.train_dataloader,
desc=f"Training Epoch {self.epoch}",
unit="batch",
colour="GREEN",
leave=False,
dynamic_ncols=True,
smoothing=0.04,
disable=not self.accelerator.is_main_process,
):
# Get losses
total_loss, losses = self._train_step(batch)
self.batch_count += 1
# Log info
if self.batch_count % self.cfg.train.gradient_accumulation_step == 0:
self.accelerator.log(
{
"Step/Generator Learning Rate": self.generator_optimizer.param_groups[
0
][
"lr"
],
"Step/Discriminator Learning Rate": self.discriminator_optimizer.param_groups[
0
][
"lr"
],
},
step=self.step,
)
for key, _ in losses.items():
self.accelerator.log(
{
"Step/Train {} Loss".format(key): losses[key],
},
step=self.step,
)
if not epoch_losses:
epoch_losses = losses
else:
for key, value in losses.items():
epoch_losses[key] += value
epoch_total_loss += total_loss
self.step += 1
# Get and log total losses
self.accelerator.wait_for_everyone()
epoch_total_loss = (
epoch_total_loss
/ len(self.train_dataloader)
* self.cfg.train.gradient_accumulation_step
)
for key in epoch_losses.keys():
epoch_losses[key] = (
epoch_losses[key]
/ len(self.train_dataloader)
* self.cfg.train.gradient_accumulation_step
)
return epoch_total_loss, epoch_losses
def _train_step(self, data):
"""Training forward step. Should return average loss of a sample over
one batch. Provoke ``_forward_step`` is recommended except for special case.
See ``_train_epoch`` for usage.
"""
# Init losses
train_losses = {}
total_loss = 0
generator_losses = {}
generator_total_loss = 0
discriminator_losses = {}
discriminator_total_loss = 0
# Use input feature to get predictions
mel_input = data["mel"]
audio_gt = data["audio"]
if self.cfg.preprocess.extract_amplitude_phase:
logamp_gt = data["logamp"]
pha_gt = data["pha"]
rea_gt = data["rea"]
imag_gt = data["imag"]
if self.cfg.preprocess.use_frame_pitch:
pitch_input = data["frame_pitch"]
if self.cfg.preprocess.use_frame_pitch:
pitch_input = pitch_input.float()
audio_pred = self.generator.forward(mel_input, pitch_input)
elif self.cfg.preprocess.extract_amplitude_phase:
(
logamp_pred,
pha_pred,
rea_pred,
imag_pred,
audio_pred,
) = self.generator.forward(mel_input)
from utils.mel import amplitude_phase_spectrum
_, _, rea_pred_final, imag_pred_final = amplitude_phase_spectrum(
audio_pred.squeeze(1), self.cfg.preprocess
)
else:
audio_pred = self.generator.forward(mel_input)
# Calculate and BP Discriminator losses
self.discriminator_optimizer.zero_grad()
for key, _ in self.discriminators.items():
y_r, y_g, _, _ = self.discriminators[key].forward(
audio_gt.unsqueeze(1), audio_pred.detach()
)
(
discriminator_losses["{}_discriminator".format(key)],
_,
_,
) = self.criterions["discriminator"](y_r, y_g)
discriminator_total_loss += discriminator_losses[
"{}_discriminator".format(key)
]
self.accelerator.backward(discriminator_total_loss)
self.discriminator_optimizer.step()
# Calculate and BP Generator losses
self.generator_optimizer.zero_grad()
for key, _ in self.discriminators.items():
y_r, y_g, f_r, f_g = self.discriminators[key].forward(
audio_gt.unsqueeze(1), audio_pred
)
generator_losses["{}_feature".format(key)] = self.criterions["feature"](
f_r, f_g
)
generator_losses["{}_generator".format(key)], _ = self.criterions[
"generator"
](y_g)
generator_total_loss += generator_losses["{}_feature".format(key)]
generator_total_loss += generator_losses["{}_generator".format(key)]
if "mel" in self.criterions.keys():
generator_losses["mel"] = self.criterions["mel"](audio_gt, audio_pred)
generator_total_loss += generator_losses["mel"]
if "wav" in self.criterions.keys():
generator_losses["wav"] = self.criterions["wav"](audio_gt, audio_pred)
generator_total_loss += generator_losses["wav"]
if "amplitude" in self.criterions.keys():
generator_losses["amplitude"] = self.criterions["amplitude"](
logamp_gt, logamp_pred
)
generator_total_loss += generator_losses["amplitude"]
if "phase" in self.criterions.keys():
generator_losses["phase"] = self.criterions["phase"](pha_gt, pha_pred)
generator_total_loss += generator_losses["phase"]
if "consistency" in self.criterions.keys():
generator_losses["consistency"] = self.criterions["consistency"](
rea_gt, rea_pred, rea_pred_final, imag_gt, imag_pred, imag_pred_final
)
generator_total_loss += generator_losses["consistency"]
self.accelerator.backward(generator_total_loss)
self.generator_optimizer.step()
# Get the total losses
total_loss = discriminator_total_loss + generator_total_loss
train_losses.update(discriminator_losses)
train_losses.update(generator_losses)
for key, _ in train_losses.items():
train_losses[key] = train_losses[key].item()
return total_loss.item(), train_losses
def _valid_epoch(self):
"""Testing epoch. Should return average loss of a batch (sample) over
one epoch. See ``train_loop`` for usage.
"""
self.generator.eval()
for key, _ in self.discriminators.items():
self.discriminators[key].eval()
epoch_losses: dict = {}
epoch_total_loss: int = 0
for batch in tqdm(
self.valid_dataloader,
desc=f"Validating Epoch {self.epoch}",
unit="batch",
colour="GREEN",
leave=False,
dynamic_ncols=True,
smoothing=0.04,
disable=not self.accelerator.is_main_process,
):
# Get losses
total_loss, losses = self._valid_step(batch)
# Log info
for key, _ in losses.items():
self.accelerator.log(
{
"Step/Valid {} Loss".format(key): losses[key],
},
step=self.step,
)
if not epoch_losses:
epoch_losses = losses
else:
for key, value in losses.items():
epoch_losses[key] += value
epoch_total_loss += total_loss
# Get and log total losses
self.accelerator.wait_for_everyone()
epoch_total_loss = epoch_total_loss / len(self.valid_dataloader)
for key in epoch_losses.keys():
epoch_losses[key] = epoch_losses[key] / len(self.valid_dataloader)
return epoch_total_loss, epoch_losses
def _valid_step(self, data):
"""Testing forward step. Should return average loss of a sample over
one batch. Provoke ``_forward_step`` is recommended except for special case.
See ``_test_epoch`` for usage.
"""
# Init losses
valid_losses = {}
total_loss = 0
generator_losses = {}
generator_total_loss = 0
discriminator_losses = {}
discriminator_total_loss = 0
# Use feature inputs to get the predicted audio
mel_input = data["mel"]
audio_gt = data["audio"]
if self.cfg.preprocess.extract_amplitude_phase:
logamp_gt = data["logamp"]
pha_gt = data["pha"]
rea_gt = data["rea"]
imag_gt = data["imag"]
if self.cfg.preprocess.use_frame_pitch:
pitch_input = data["frame_pitch"]
if self.cfg.preprocess.use_frame_pitch:
pitch_input = pitch_input.float()
audio_pred = self.generator.forward(mel_input, pitch_input)
elif self.cfg.preprocess.extract_amplitude_phase:
(
logamp_pred,
pha_pred,
rea_pred,
imag_pred,
audio_pred,
) = self.generator.forward(mel_input)
from utils.mel import amplitude_phase_spectrum
_, _, rea_pred_final, imag_pred_final = amplitude_phase_spectrum(
audio_pred.squeeze(1), self.cfg.preprocess
)
else:
audio_pred = self.generator.forward(mel_input)
# Get Discriminator losses
for key, _ in self.discriminators.items():
y_r, y_g, _, _ = self.discriminators[key].forward(
audio_gt.unsqueeze(1), audio_pred
)
(
discriminator_losses["{}_discriminator".format(key)],
_,
_,
) = self.criterions["discriminator"](y_r, y_g)
discriminator_total_loss += discriminator_losses[
"{}_discriminator".format(key)
]
for key, _ in self.discriminators.items():
y_r, y_g, f_r, f_g = self.discriminators[key].forward(
audio_gt.unsqueeze(1), audio_pred
)
generator_losses["{}_feature".format(key)] = self.criterions["feature"](
f_r, f_g
)
generator_losses["{}_generator".format(key)], _ = self.criterions[
"generator"
](y_g)
generator_total_loss += generator_losses["{}_feature".format(key)]
generator_total_loss += generator_losses["{}_generator".format(key)]
if "mel" in self.criterions.keys():
generator_losses["mel"] = self.criterions["mel"](audio_gt, audio_pred)
generator_total_loss += generator_losses["mel"]
if "mel" in self.criterions.keys():
generator_losses["mel"] = self.criterions["mel"](audio_gt, audio_pred)
generator_total_loss += generator_losses["mel"]
if "wav" in self.criterions.keys():
generator_losses["wav"] = self.criterions["wav"](audio_gt, audio_pred)
generator_total_loss += generator_losses["wav"]
if "wav" in self.criterions.keys():
generator_losses["wav"] = self.criterions["wav"](audio_gt, audio_pred)
generator_total_loss += generator_losses["wav"]
if "amplitude" in self.criterions.keys():
generator_losses["amplitude"] = self.criterions["amplitude"](
logamp_gt, logamp_pred
)
generator_total_loss += generator_losses["amplitude"]
if "phase" in self.criterions.keys():
generator_losses["phase"] = self.criterions["phase"](pha_gt, pha_pred)
generator_total_loss += generator_losses["phase"]
if "consistency" in self.criterions.keys():
generator_losses["consistency"] = self.criterions["consistency"](
rea_gt,
rea_pred,
rea_pred_final,
imag_gt,
imag_pred,
imag_pred_final,
)
generator_total_loss += generator_losses["consistency"]
total_loss = discriminator_total_loss + generator_total_loss
valid_losses.update(discriminator_losses)
valid_losses.update(generator_losses)
for item in valid_losses:
valid_losses[item] = valid_losses[item].item()
return total_loss.item(), valid_losses
def _inference(self, eval_mel, eval_pitch=None, use_pitch=False):
"""Inference during training for test audios."""
if use_pitch:
eval_pitch = align_length(eval_pitch, eval_mel.shape[1])
eval_audio = vocoder_inference(
self.cfg,
self.generator,
torch.from_numpy(eval_mel).unsqueeze(0),
f0s=torch.from_numpy(eval_pitch).unsqueeze(0).float(),
device=next(self.generator.parameters()).device,
).squeeze(0)
else:
eval_audio = vocoder_inference(
self.cfg,
self.generator,
torch.from_numpy(eval_mel).unsqueeze(0),
device=next(self.generator.parameters()).device,
).squeeze(0)
return eval_audio
def _load_model(self, checkpoint_dir, checkpoint_path=None, resume_type="resume"):
"""Load model from checkpoint. If checkpoint_path is None, it will
load the latest checkpoint in checkpoint_dir. If checkpoint_path is not
None, it will load the checkpoint specified by checkpoint_path. **Only use this
method after** ``accelerator.prepare()``.
"""
if checkpoint_path is None:
ls = [str(i) for i in Path(checkpoint_dir).glob("*")]
ls.sort(key=lambda x: int(x.split("_")[-3].split("-")[-1]), reverse=True)
checkpoint_path = ls[0]
if resume_type == "resume":
self.accelerator.load_state(checkpoint_path)
self.epoch = int(checkpoint_path.split("_")[-3].split("-")[-1]) + 1
self.step = int(checkpoint_path.split("_")[-2].split("-")[-1]) + 1
elif resume_type == "finetune":
accelerate.load_checkpoint_and_dispatch(
self.accelerator.unwrap_model(self.generator),
os.path.join(checkpoint_path, "pytorch_model.bin"),
)
for key, _ in self.discriminators.items():
accelerate.load_checkpoint_and_dispatch(
self.accelerator.unwrap_model(self.discriminators[key]),
os.path.join(checkpoint_path, "pytorch_model.bin"),
)
self.logger.info("Load model weights for finetune SUCCESS!")
else:
raise ValueError("Unsupported resume type: {}".format(resume_type))
return checkpoint_path
def _count_parameters(self):
result = sum(p.numel() for p in self.generator.parameters())
for _, discriminator in self.discriminators.items():
result += sum(p.numel() for p in discriminator.parameters())
return result
|