Spaces:
Running
on
Zero
Running
on
Zero
## MaskGCT: Zero-Shot Text-to-Speech with Masked Generative Codec Transformer | |
[![arXiv](https://img.shields.io/badge/arXiv-Paper-COLOR.svg)](https://arxiv.org/abs/2409.00750) | |
[![hf](https://img.shields.io/badge/%F0%9F%A4%97%20HuggingFace-model-yellow)](https://huggingface.co./amphion/maskgct) | |
[![hf](https://img.shields.io/badge/%F0%9F%A4%97%20HuggingFace-demo-pink)](https://huggingface.co./spaces/amphion/maskgct) | |
[![readme](https://img.shields.io/badge/README-Key%20Features-blue)](../../../models/tts/maskgct/README.md) | |
## Overview | |
MaskGCT (**Mask**ed **G**enerative **C**odec **T**ransformer) is *a fully non-autoregressive TTS model that eliminates the need for explicit alignment information between text and speech supervision, as well as phone-level duration prediction*. MaskGCT is a two-stage model: in the first stage, the model uses text to predict semantic tokens extracted from a speech self-supervised learning (SSL) model, and in the second stage, the model predicts acoustic tokens conditioned on these semantic tokens. MaskGCT follows the *mask-and-predict* learning paradigm. During training, MaskGCT learns to predict masked semantic or acoustic tokens based on given conditions and prompts. During inference, the model generates tokens of a specified length in a parallel manner. Experiments with 100K hours of in-the-wild speech demonstrate that MaskGCT outperforms the current state-of-the-art zero-shot TTS systems in terms of quality, similarity, and intelligibility. Audio samples are available at [demo page](https://maskgct.github.io/). | |
<br> | |
<div align="center"> | |
<img src="../../../imgs/maskgct/maskgct.png" width="100%"> | |
</div> | |
<br> | |
## News | |
- **2024/10/19**: We release **MaskGCT**, a fully non-autoregressive TTS model that eliminates the need for explicit alignment information between text and speech supervision. MaskGCT is trained on Emilia dataset and achieves SOTA zero-shot TTS perfermance. | |
## Quickstart | |
**Clone and install** | |
```bash | |
git clone https://github.com/open-mmlab/Amphion.git | |
# create env | |
bash ./models/tts/maskgct/env.sh | |
``` | |
**Model download** | |
We provide the following pretrained checkpoints: | |
| Model Name | Description | | |
|-------------------|-------------| | |
| [Acoustic Codec](https://huggingface.co./amphion/MaskGCT/tree/main/acoustic_codec) | Converting speech to semantic tokens. | | |
| [Semantic Codec](https://huggingface.co./amphion/MaskGCT/tree/main/semantic_codec) | Converting speech to acoustic tokens and reconstructing waveform from acoustic tokens. | | |
| [MaskGCT-T2S](https://huggingface.co./amphion/MaskGCT/tree/main/t2s_model) | Predicting semantic tokens with text and prompt semantic tokens. | | |
| [MaskGCT-S2A](https://huggingface.co./amphion/MaskGCT/tree/main/s2a_model) | Predicts acoustic tokens conditioned on semantic tokens. | | |
You can download all pretrained checkpoints from [HuggingFace](https://huggingface.co./amphion/MaskGCT/tree/main) or use huggingface api. | |
```python | |
from huggingface_hub import hf_hub_download | |
# download semantic codec ckpt | |
semantic_code_ckpt = hf_hub_download("amphion/MaskGCT" filename="semantic_codec/model.safetensors") | |
# download acoustic codec ckpt | |
codec_encoder_ckpt = hf_hub_download("amphion/MaskGCT", filename="acoustic_codec/model.safetensors") | |
codec_decoder_ckpt = hf_hub_download("amphion/MaskGCT", filename="acoustic_codec/model_1.safetensors") | |
# download t2s model ckpt | |
t2s_model_ckpt = hf_hub_download("amphion/MaskGCT", filename="t2s_model/model.safetensors") | |
# download s2a model ckpt | |
s2a_1layer_ckpt = hf_hub_download("amphion/MaskGCT", filename="s2a_model/s2a_model_1layer/model.safetensors") | |
s2a_full_ckpt = hf_hub_download("amphion/MaskGCT", filename="s2a_model/s2a_model_full/model.safetensors") | |
``` | |
**Basic Usage** | |
You can use the following code to generate speech from text and a prompt speech (the code is also provided in [inference.py](../../../models/tts/maskgct/maskgct_inference.py)). | |
```python | |
from models.tts.maskgct.maskgct_utils import * | |
from huggingface_hub import hf_hub_download | |
import safetensors | |
import soundfile as sf | |
if __name__ == "__main__": | |
# build model | |
device = torch.device("cuda:0") | |
cfg_path = "./models/tts/maskgct/config/maskgct.json" | |
cfg = load_config(cfg_path) | |
# 1. build semantic model (w2v-bert-2.0) | |
semantic_model, semantic_mean, semantic_std = build_semantic_model(device) | |
# 2. build semantic codec | |
semantic_codec = build_semantic_codec(cfg.model.semantic_codec, device) | |
# 3. build acoustic codec | |
codec_encoder, codec_decoder = build_acoustic_codec(cfg.model.acoustic_codec, device) | |
# 4. build t2s model | |
t2s_model = build_t2s_model(cfg.model.t2s_model, device) | |
# 5. build s2a model | |
s2a_model_1layer = build_s2a_model(cfg.model.s2a_model.s2a_1layer, device) | |
s2a_model_full = build_s2a_model(cfg.model.s2a_model.s2a_full, device) | |
# download checkpoint | |
... | |
# load semantic codec | |
safetensors.torch.load_model(semantic_codec, semantic_code_ckpt) | |
# load acoustic codec | |
safetensors.torch.load_model(codec_encoder, codec_encoder_ckpt) | |
safetensors.torch.load_model(codec_decoder, codec_decoder_ckpt) | |
# load t2s model | |
safetensors.torch.load_model(t2s_model, t2s_model_ckpt) | |
# load s2a model | |
safetensors.torch.load_model(s2a_model_1layer, s2a_1layer_ckpt) | |
safetensors.torch.load_model(s2a_model_full, s2a_full_ckpt) | |
# inference | |
prompt_wav_path = "./models/tts/maskgct/wav/prompt.wav" | |
save_path = "[YOUR SAVE PATH]" | |
prompt_text = " We do not break. We never give in. We never back down." | |
target_text = "In this paper, we introduce MaskGCT, a fully non-autoregressive TTS model that eliminates the need for explicit alignment information between text and speech supervision." | |
# Specify the target duration (in seconds). If target_len = None, we use a simple rule to predict the target duration. | |
target_len = 18 | |
maskgct_inference_pipeline = MaskGCT_Inference_Pipeline( | |
semantic_model, | |
semantic_codec, | |
codec_encoder, | |
codec_decoder, | |
t2s_model, | |
s2a_model_1layer, | |
s2a_model_full, | |
semantic_mean, | |
semantic_std, | |
device, | |
) | |
recovered_audio = maskgct_inference_pipeline.maskgct_inference( | |
prompt_wav_path, prompt_text, target_text, "en", "en", target_len=target_len | |
) | |
sf.write(save_path, recovered_audio, 24000) | |
``` | |
**Jupyter Notebook** | |
We also provide a [jupyter notebook](../../../models/tts/maskgct/maskgct_demo.ipynb) to show more details of MaskGCT inference. | |
## Evaluation Results of MaskGCT | |
| System | SIM-O↑ | WER↓ | FSD↓ | SMOS↑ | CMOS↑ | | |
| :--- | :---: | :---: | :---: | :---: | :---: | | |
| | | **LibriSpeech test-clean** | | |
| Ground Truth | 0.68 | 1.94 | | 4.05±0.12 | 0.00 | | |
| VALL-E | 0.50 | 5.90 | - | 3.47 ±0.26 | -0.52±0.22 | | |
| VoiceBox | 0.64 | 2.03 | 0.762 | 3.80±0.17 | -0.41±0.13 | | |
| NaturalSpeech 3 | 0.67 | 1.94 | 0.786 | 4.26±0.10 | 0.16±0.14 | | |
| VoiceCraft | 0.45 | 4.68 | 0.981 | 3.52±0.21 | -0.33 ±0.16 | | |
| XTTS-v2 | 0.51 | 4.20 | 0.945 | 3.02±0.22 | -0.98 ±0.19 | | |
| MaskGCT | 0.687(0.723) | 2.634(1.976) | 0.886 | 4.27±0.14 | 0.10±0.16 | | |
| MaskGCT(gt length) | 0.697 | 2.012 | 0.746 | 4.33±0.11 | 0.13±0.13 | | |
| | | **SeedTTS test-en** | | |
| Ground Truth | 0.730 | 2.143 | | 3.92±0.15 | 0.00 | | |
| CosyVoice | 0.643 | 4.079 | 0.316 | 3.52±0.17 | -0.41 ±0.18 | | |
| XTTS-v2 | 0.463 | 3.248 | 0.484 | 3.15±0.22 | -0.86±0.19 | | |
| VoiceCraft | 0.470 | 7.556 | 0.226 | 3.18±0.20 | -1.08 ±0.15 | | |
| MaskGCT | 0.717(0.760) | 2.623(1.283) | 0.188 | 4.24 ±0.12 | 0.03 ±0.14 | | |
| MaskGCT(gt length) | 0.728 | 2.466 | 0.159 | 4.13 ±0.17 | 0.12 ±0.15 | | |
| | | **SeedTTS test-zh** | | |
| Ground Truth | 0.750 | 1.254 | | 3.86 ±0.17 | 0.00 | | |
| CosyVoice | 0.750 | 4.089 | 0.276 | 3.54 ±0.12 | -0.45 ±0.15 | | |
| XTTS-v2 | 0.635 | 2.876 | 0.413 | 2.95 ±0.18 | -0.81 ±0.22 | | |
| MaskGCT | 0.774(0.805) | 2.273(0.843) | 0.106 | 4.09 ±0.12 | 0.05 ±0.17 | | |
| MaskGCT(gt length) | 0.777 | 2.183 | 0.101 | 4.11 ±0.12 | 0.08±0.18 | | |
## Citations | |
If you use MaskGCT in your research, please cite the following paper: | |
```bibtex | |
@article{wang2024maskgct, | |
title={MaskGCT: Zero-Shot Text-to-Speech with Masked Generative Codec Transformer}, | |
author={Wang, Yuancheng and Zhan, Haoyue and Liu, Liwei and Zeng, Ruihong and Guo, Haotian and Zheng, Jiachen and Zhang, Qiang and Zhang, Shunsi and Wu, Zhizheng}, | |
journal={arXiv preprint arXiv:2409.00750}, | |
year={2024} | |
} | |
@article{zhang2023amphion, | |
title={Amphion: An open-source audio, music and speech generation toolkit}, | |
author={Zhang, Xueyao and Xue, Liumeng and Wang, Yuancheng and Gu, Yicheng and Chen, Xi and Fang, Zihao and Chen, Haopeng and Zou, Lexiao and Wang, Chaoren and Han, Jun and others}, | |
journal={arXiv preprint arXiv:2312.09911}, | |
year={2023} | |
} | |
``` |