|
|
|
|
|
|
|
|
|
import os |
|
from datetime import datetime |
|
import ee |
|
import json |
|
import numpy as np |
|
import geemap.foliumap as gee_folium |
|
import leafmap.foliumap as leaf_folium |
|
import streamlit as st |
|
import pandas as pd |
|
import plotly.express as px |
|
import branca.colormap as cm |
|
|
|
from functions import * |
|
import xml.etree.ElementTree as ET |
|
|
|
st.set_page_config(layout="wide") |
|
|
|
|
|
|
|
|
|
st.write( |
|
f""" |
|
<div style="display: flex; justify-content: space-between; align-items: center;"> |
|
<img src="https://huggingface.co./spaces/SustainabilityLabIITGN/NDVI_PERG/resolve/main/Final_IITGN-Logo-symmetric-Color.png" style="width: 10%; margin-right: auto;"> |
|
<img src="https://huggingface.co./spaces/SustainabilityLabIITGN/NDVI_PERG/resolve/main/IFS.jpg" style="width: 10%; margin-left: auto;"> |
|
</div> |
|
""", |
|
unsafe_allow_html=True, |
|
) |
|
|
|
|
|
|
|
|
|
|
|
st.markdown( |
|
f""" |
|
<h1 style="text-align: center;">Kamlan: KML Analyzer</h1> |
|
""", |
|
unsafe_allow_html=True, |
|
) |
|
|
|
|
|
|
|
|
|
|
|
|
|
file_url = st.query_params.get("file_url", None) |
|
if file_url is None: |
|
file_url = st.file_uploader("Upload KML/GeoJSON file", type=["geojson", "kml"]) |
|
|
|
if file_url is None: |
|
st.warning( |
|
"Please provide a KML or GeoJSON URL as a query parameter, e.g., `https://sustainabilitylabiitgn-ndvi-perg.hf.space?file_url=<your_file_url>` or upload a file." |
|
) |
|
force_stop() |
|
|
|
|
|
|
|
if ("cached_file_url" in st.session_state) and (st.session_state.cached_file_url == file_url): |
|
input_gdf = st.session_state.input_gdf |
|
geometry_gdf = st.session_state.geometry_gdf |
|
else: |
|
input_gdf = get_gdf_from_file_url(file_url) |
|
input_gdf = preprocess_gdf(input_gdf) |
|
|
|
for i in range(len(input_gdf)): |
|
geometry_gdf = input_gdf[input_gdf.index == i] |
|
if is_valid_polygon(geometry_gdf): |
|
break |
|
else: |
|
st.error(f"No polygon found inside KML. Please check the KML file.") |
|
force_stop() |
|
|
|
geometry_gdf = to_best_crs(geometry_gdf) |
|
st.session_state.input_gdf = input_gdf |
|
st.session_state.geometry_gdf = geometry_gdf |
|
st.session_state.cached_file_url = file_url |
|
|
|
|
|
|
|
|
|
container = st.container() |
|
|
|
|
|
|
|
|
|
|
|
with st.expander("Advanced Settings"): |
|
st.write("Select the vegetation indices to calculate:") |
|
all_veg_indices = ["NDVI", "EVI", "EVI2"] |
|
formulas = { |
|
"NDVI": r"$\frac{NIR - Red}{NIR + Red}$", |
|
"EVI": r"$G \times \frac{NIR - Red}{NIR + C1 \times Red - C2 \times Blue + L}$", |
|
"EVI2": r"$G \times \frac{NIR - Red}{NIR + L + C \times Red}$", |
|
} |
|
defaults = [True, False, False] |
|
veg_indices = [] |
|
for veg_index, default in zip(all_veg_indices, defaults): |
|
if st.checkbox(f"{veg_index} = {formulas[veg_index]}", value=default): |
|
veg_indices.append(veg_index) |
|
st.write("Select the parameters for the EVI/EVI2 calculation (default is as per EVI's Wikipedia page)") |
|
cols = st.columns(5) |
|
evi_vars = {} |
|
for col, name, default in zip(cols, ["G", "C1", "C2", "L", "C"], [2.5, 6, 7.5, 1, 2.4]): |
|
value = col.number_input(f"{name}", value=default) |
|
evi_vars[name] = value |
|
|
|
|
|
max_year = datetime.now().year |
|
jan_1 = pd.to_datetime(f"{max_year}/01/01", format="%Y/%m/%d") |
|
dec_31 = pd.to_datetime(f"{max_year}/12/31", format="%Y/%m/%d") |
|
nov_15 = pd.to_datetime(f"{max_year}/11/15", format="%Y/%m/%d") |
|
dec_15 = pd.to_datetime(f"{max_year}/12/15", format="%Y/%m/%d") |
|
input_daterange = st.date_input( |
|
'Date Range (Ignore year. App will compute indices for this date range in each year starting from "Minimum Year" to "Maximum Year")', |
|
(nov_15, dec_15), |
|
jan_1, |
|
dec_31, |
|
) |
|
cols = st.columns(2) |
|
with cols[0]: |
|
min_year = int(st.number_input("Minimum Year", value=2019, min_value=2015, step=1)) |
|
with cols[1]: |
|
max_year = int(st.number_input("Maximum Year", value=max_year, min_value=2015, step=1)) |
|
|
|
buffer = st.number_input("Buffer (m)", value=50, min_value=0, step=1) |
|
|
|
if len(input_gdf) > 1: |
|
with container: |
|
st.warning(f"Only the first polygon in the KML is processed; all other geometries are ignored.") |
|
|
|
|
|
|
|
outer_geometry_gdf = geometry_gdf.copy() |
|
outer_geometry_gdf["geometry"] = outer_geometry_gdf["geometry"].buffer(buffer) |
|
buffer_geometry_gdf = ( |
|
outer_geometry_gdf.difference(geometry_gdf).reset_index().drop(columns="index") |
|
) |
|
buffer_geometry_gdf["Name"] = "Buffer" |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
url = "https://wayback.maptiles.arcgis.com/arcgis/rest/services/World_Imagery/MapServer/WMTS/1.0.0/WMTSCapabilities.xml" |
|
response = requests.get(url) |
|
response.raise_for_status() |
|
|
|
|
|
root = ET.fromstring(response.content) |
|
|
|
ns = { |
|
"wmts": "https://www.opengis.net/wmts/1.0", |
|
"ows": "https://www.opengis.net/ows/1.1", |
|
"xlink": "https://www.w3.org/1999/xlink", |
|
} |
|
|
|
layers = root.findall(".//wmts:Contents/wmts:Layer", ns) |
|
|
|
layer_data = [] |
|
for layer in layers: |
|
title = layer.find("ows:Title", ns) |
|
identifier = layer.find("ows:Identifier", ns) |
|
resource = layer.find("wmts:ResourceURL", ns) |
|
|
|
title_text = title.text if title is not None else "N/A" |
|
identifier_text = identifier.text if identifier is not None else "N/A" |
|
url_template = resource.get("template") if resource is not None else "N/A" |
|
|
|
layer_data.append({"Title": title_text, "ResourceURL_Template": url_template}) |
|
|
|
wayback_df = pd.DataFrame(layer_data) |
|
wayback_df["date"] = pd.to_datetime(wayback_df["Title"].str.extract(r"(\d{4}-\d{2}-\d{2})").squeeze(), errors="coerce") |
|
wayback_df.set_index("date", inplace=True) |
|
print(wayback_df) |
|
|
|
|
|
|
|
|
|
first_item = wayback_df.iloc[0] |
|
wayback_title = "Esri " + first_item["Title"] |
|
wayback_url = ( |
|
first_item["ResourceURL_Template"] |
|
.replace("{TileMatrixSet}", "GoogleMapsCompatible") |
|
.replace("{TileMatrix}", "{z}") |
|
.replace("{TileRow}", "{y}") |
|
.replace("{TileCol}", "{x}") |
|
) |
|
|
|
|
|
with container: |
|
map_type = st.radio( |
|
"", |
|
["Esri Satellite Map", "Google Hybrid Map (displays place names)", "Google Satellite Map"], |
|
horizontal=True, |
|
) |
|
m = leaf_folium.Map() |
|
if map_type == "Google Hybrid Map (displays place names)": |
|
write_info("Google Hybrid Map (displays place names)", center_align=True) |
|
m.add_basemap("HYBRID") |
|
elif map_type == "Google Satellite Map": |
|
write_info("Google Satellite Map", center_align=True) |
|
m.add_basemap("SATELLITE") |
|
elif map_type == "Esri Satellite Map": |
|
write_info(wayback_title, center_align=True) |
|
m.add_wms_layer( |
|
wayback_url, |
|
layers="0", |
|
name=wayback_title, |
|
attribution="Esri", |
|
) |
|
else: |
|
st.error("Invalid map type") |
|
force_stop() |
|
|
|
add_geometry_to_maps([m], geometry_gdf, buffer_geometry_gdf, opacity=0.3) |
|
m.to_streamlit() |
|
|
|
|
|
centroid = geometry_gdf.to_crs(4326).centroid.item() |
|
centroid_lon = centroid.xy[0][0] |
|
centroid_lat = centroid.xy[1][0] |
|
stats_df = pd.DataFrame( |
|
{ |
|
"Area (m^2)": geometry_gdf.area.item(), |
|
"Perimeter (m)": geometry_gdf.length.item(), |
|
"Points": str(json.loads(geometry_gdf.to_crs(4326).to_json())["features"][0]["geometry"]["coordinates"]), |
|
"Centroid": f"({centroid_lat:.6f}, {centroid_lon:.6f})", |
|
}, |
|
index=[0], |
|
) |
|
|
|
gmaps_redirect_url = f"http://maps.google.com/maps?q={centroid_lat},{centroid_lon}&layer=satellite" |
|
with container: |
|
st.markdown( |
|
f""" |
|
<div style="display: flex; justify-content: center;"> |
|
<table style="border-collapse: collapse; text-align: center;"> |
|
<tr> |
|
<th style="border: 1px solid black; text-align: left;">Metric</th> |
|
<th style="border: 1px solid black; text-align: right;">Value</th> |
|
<th style="border: 1px solid black; text-align: left;">Unit</th> |
|
</tr> |
|
<tr> |
|
<td style="border: 1px solid black; text-align: left;">Area</td> |
|
<td style="border: 1px solid black; text-align: right;">{stats_df['Area (m^2)'].item()/10000:.2f}</td> |
|
<td style="border: 1px solid black; text-align: left;">ha</td> |
|
</tr> |
|
<tr> |
|
<td style="border: 1px solid black; text-align: left;">Perimeter</td> |
|
<td style="border: 1px solid black; text-align: right;">{stats_df['Perimeter (m)'].item():.2f}</td> |
|
<td style="border: 1px solid black; text-align: left;">m</td> |
|
</tr> |
|
<tr> |
|
<td style="border: 1px solid black; text-align: left;">Centroid</td> |
|
<td style="border: 1px solid black; text-align: right;">({centroid_lat:.6f}, {centroid_lon:.6f})</td> |
|
<td style="border: 1px solid black; text-align: left;">(lat, lon)</td> |
|
</table> |
|
</div> |
|
<div style="text-align: center; margin-bottom: 10px;"> |
|
<a href="{gmaps_redirect_url}" target="_blank"> |
|
<button>View on Google Maps</button> |
|
</a> |
|
</div> |
|
""", |
|
unsafe_allow_html=True, |
|
) |
|
|
|
stats_csv = stats_df.to_csv(index=False) |
|
with container: |
|
st.download_button( |
|
"Download Geometry Metrics", stats_csv, "geometry_metrics.csv", "text/csv", use_container_width=True |
|
) |
|
|
|
|
|
if "one_time_setup_done" not in st.session_state: |
|
one_time_setup() |
|
st.session_state.one_time_setup_done = True |
|
|
|
if ("cached_dem_maps" in st.session_state) and (st.session_state.cached_file_url == file_url): |
|
dem_map = st.session_state.dem_map |
|
slope_map = st.session_state.slope_map |
|
else: |
|
dem_map, slope_map = get_dem_slope_maps( |
|
ee.Geometry(geometry_gdf.to_crs(4326).geometry.item().__geo_interface__), wayback_url, wayback_title |
|
) |
|
st.session_state.dem_map = dem_map |
|
st.session_state.slope_map = slope_map |
|
st.session_state.cached_dem_maps = True |
|
|
|
with container: |
|
st.write( |
|
"<h3><div style='text-align: center;'>DEM and Slope from SRTM at 30m resolution</div></h3>", |
|
unsafe_allow_html=True, |
|
) |
|
cols = st.columns(2) |
|
for col, param_map, title in zip(cols, [dem_map, slope_map], ["DEM Map", "Slope Map"]): |
|
with col: |
|
param_map.add_gdf( |
|
geometry_gdf, |
|
layer_name="Geometry", |
|
style_function=lambda x: {"color": "blue", "fillOpacity": 0.0, "fillColor": "blue"}, |
|
) |
|
write_info(f"""<div style="text-align: center;">{title}</div>""") |
|
param_map.addLayerControl() |
|
param_map.to_streamlit() |
|
|
|
|
|
m = st.markdown( |
|
""" |
|
<style> |
|
div.stButton > button:first-child { |
|
background-color: #006400; |
|
color:#ffffff; |
|
} |
|
</style>""", |
|
unsafe_allow_html=True, |
|
) |
|
submit = st.button("Calculate Vegetation Indices", use_container_width=True) |
|
|
|
|
|
ee_geometry = ee.Geometry(geometry_gdf.to_crs(4326).geometry.item().__geo_interface__) |
|
ee_feature_collection = ee.FeatureCollection(ee_geometry) |
|
buffer_ee_geometry = ee.Geometry(buffer_geometry_gdf.to_crs(4326).geometry.item().__geo_interface__) |
|
buffer_ee_feature_collection = ee.FeatureCollection(buffer_ee_geometry) |
|
outer_ee_geometry = ee.Geometry(outer_geometry_gdf.to_crs(4326).geometry.item().__geo_interface__) |
|
outer_ee_feature_collection = ee.FeatureCollection(outer_ee_geometry) |
|
|
|
if submit: |
|
satellites = { |
|
"COPERNICUS/S2_SR_HARMONIZED": { |
|
"scale": 10, |
|
"collection": ee.ImageCollection("COPERNICUS/S2_SR_HARMONIZED") |
|
.select( |
|
["B2", "B4", "B8", "MSK_CLDPRB", "TCI_R", "TCI_G", "TCI_B"], |
|
["Blue", "Red", "NIR", "MSK_CLDPRB", "R", "G", "B"], |
|
) |
|
.map(lambda image: add_indices(image, nir_band="NIR", red_band="Red", blue_band="Blue", evi_vars=evi_vars)), |
|
}, |
|
} |
|
satellite = list(satellites.keys())[0] |
|
st.session_state.satellites = satellites |
|
st.session_state.satellite = satellite |
|
|
|
|
|
st.markdown(f"Satellite source: `{satellite}`") |
|
satellite_selected = {} |
|
for satellite in satellites: |
|
satellite_selected[satellite] = satellite |
|
|
|
st.write("<h2><div style='text-align: center;'>Results</div></h2>", unsafe_allow_html=True) |
|
if not any(satellite_selected.values()): |
|
st.error("Please select at least one satellite source") |
|
force_stop() |
|
|
|
|
|
start_day = input_daterange[0].day |
|
start_month = input_daterange[0].month |
|
end_day = input_daterange[1].day |
|
end_month = input_daterange[1].month |
|
|
|
dates = [] |
|
for year in range(min_year, max_year + 1): |
|
start_date = pd.to_datetime(f"{year}-{start_month:02d}-{start_day:02d}") |
|
end_date = pd.to_datetime(f"{year}-{end_month:02d}-{end_day:02d}") |
|
dates.append((start_date, end_date)) |
|
|
|
result_df = pd.DataFrame() |
|
for satellite, attrs in satellites.items(): |
|
if not satellite_selected[satellite]: |
|
continue |
|
|
|
with st.spinner(f"Processing {satellite} ..."): |
|
progress_bar = st.progress(0) |
|
for i, daterange in enumerate(dates): |
|
process_date( |
|
daterange, |
|
satellite, |
|
veg_indices, |
|
satellites, |
|
buffer_ee_geometry, |
|
ee_feature_collection, |
|
buffer_ee_feature_collection, |
|
result_df, |
|
) |
|
progress_bar.progress((i + 1) / len(dates)) |
|
|
|
st.session_state.result = result_df |
|
|
|
print("Printing result...") |
|
if "result" in st.session_state: |
|
result_df = st.session_state.result |
|
satellites = st.session_state.satellites |
|
satellite = st.session_state.satellite |
|
|
|
print(result_df.columns) |
|
|
|
|
|
result_df = result_df.dropna(how="all") |
|
|
|
result_df = result_df.dropna(axis=1, how="all") |
|
print(result_df.columns) |
|
print(result_df.head(2)) |
|
|
|
|
|
|
|
for column in result_df.columns: |
|
result_df[column] = pd.to_numeric(result_df[column], errors="ignore") |
|
|
|
df_numeric = result_df.select_dtypes(include=["float64"]) |
|
|
|
html = df_numeric.style.format(precision=2).set_properties(**{"text-align": "right"}).to_html() |
|
st.write( |
|
f"""<div style="display: flex; justify-content: center;"> |
|
{html}</div>""", |
|
unsafe_allow_html=True, |
|
) |
|
df_numeric_csv = df_numeric.to_csv(index=True) |
|
st.download_button( |
|
"Download Time Series Data", df_numeric_csv, "vegetation_indices.csv", "text/csv", use_container_width=True |
|
) |
|
|
|
df_numeric.index = [daterange_str_to_year(daterange) for daterange in df_numeric.index] |
|
for veg_index in veg_indices: |
|
fig = px.line(df_numeric, y=[veg_index, f"{veg_index}_buffer", f"{veg_index}_ratio"], markers=True) |
|
fig.update_layout(xaxis=dict(tickvals=df_numeric.index, ticktext=df_numeric.index)) |
|
st.plotly_chart(fig) |
|
|
|
st.write( |
|
"<h3><div style='text-align: center;'>Visual Comparison between Two Years</div></h3>", unsafe_allow_html=True |
|
) |
|
cols = st.columns(2) |
|
|
|
with cols[0]: |
|
year_1 = st.selectbox("Year 1", result_df.index, index=0, format_func=lambda x: daterange_str_to_year(x)) |
|
with cols[1]: |
|
year_2 = st.selectbox( |
|
"Year 2", result_df.index, index=len(result_df.index) - 1, format_func=lambda x: daterange_str_to_year(x) |
|
) |
|
|
|
vis_params = {"min": 0, "max": 1, "palette": ["white", "green"]} |
|
|
|
|
|
colormap = cm.LinearColormap(colors=vis_params["palette"], vmin=vis_params["min"], vmax=vis_params["max"]) |
|
|
|
for veg_index in veg_indices: |
|
st.write(f"<h3><div style='text-align: center;'>{veg_index}</div></h3>", unsafe_allow_html=True) |
|
cols = st.columns(2) |
|
for col, daterange_str in zip(cols, [year_1, year_2]): |
|
mosaic = result_df.loc[daterange_str, f"mosaic_{veg_index}"] |
|
with col: |
|
m = gee_folium.Map() |
|
m.add_tile_layer( |
|
wayback_url, |
|
name=wayback_title, |
|
attribution="Esri", |
|
) |
|
veg_index_layer = gee_folium.ee_tile_layer(mosaic, {"bands": [veg_index], "min": 0, "max": 1}) |
|
|
|
if satellite == "COPERNICUS/S2_SR_HARMONIZED": |
|
min_all = 0 |
|
max_all = 255 |
|
else: |
|
raise ValueError(f"Unknown satellite: {satellite}") |
|
|
|
if veg_index == "NDVI": |
|
bins = [-1, 0, 0.1, 0.2, 0.3, 0.4, 0.5, 1] |
|
histogram, bin_edges = get_histogram(mosaic.select(veg_index), ee_geometry, bins) |
|
total_pix = np.sum(histogram) |
|
formatted_histogram = [f"{h*100/total_pix:.2f}" for h in histogram] |
|
print(histogram, bin_edges, bins, formatted_histogram) |
|
m.add_legend( |
|
title="NDVI Class/Value", |
|
legend_dict={ |
|
"<0:Waterbody ({}%)".format(formatted_histogram[0]): "#0000FF", |
|
"0-0.1: Open ({}%)".format(formatted_histogram[1]): "#FF0000", |
|
"0.1-0.2: Highly Degraded ({}%)".format(formatted_histogram[2]): "#FFFF00", |
|
"0.2-0.3: Degraded ({}%)".format(formatted_histogram[3]): "#FFA500", |
|
"0.3-0.4: Moderately Degraded ({}%)".format(formatted_histogram[4]): "#00FE00", |
|
"0.4-0.5: Dense ({}%)".format(formatted_histogram[5]): "#00A400", |
|
">0.5: Very Dense ({}%)".format(formatted_histogram[6]): "#006D00", |
|
}, |
|
position="bottomright", |
|
draggable=False, |
|
) |
|
ndvi_vis_params = { |
|
"min": -0.1, |
|
"max": 0.6, |
|
"palette": ["#0000FF", "#FF0000", "#FFFF00", "#FFA500", "#00FE00", "#00A400", "#006D00"], |
|
} |
|
m.add_layer(mosaic.select(veg_index).clip(outer_ee_geometry), ndvi_vis_params) |
|
|
|
|
|
|
|
|
|
if veg_index != "NDVI": |
|
m.add_layer(mosaic.select(veg_index).clip(outer_ee_geometry), vis_params) |
|
m.add_child(colormap) |
|
add_geometry_to_maps([m], geometry_gdf, buffer_geometry_gdf) |
|
m.to_streamlit() |
|
|
|
st.write("<h3><div style='text-align: center;'>Esri RGB Imagery</div></h3>", unsafe_allow_html=True) |
|
cols = st.columns(2) |
|
for col, daterange_str in zip(cols, [year_1, year_2]): |
|
start_date, end_date = daterange_str_to_dates(daterange_str) |
|
mid_date = start_date + (end_date - start_date) / 2 |
|
esri_date = min(wayback_df.index, key=lambda x: abs(x - mid_date)) |
|
esri_url = ( |
|
wayback_df.loc[esri_date, "ResourceURL_Template"] |
|
.replace("{TileMatrixSet}", "GoogleMapsCompatible") |
|
.replace("{TileMatrix}", "{z}") |
|
.replace("{TileRow}", "{y}") |
|
.replace("{TileCol}", "{x}") |
|
) |
|
esri_title = "Esri " + wayback_df.loc[esri_date, "Title"] |
|
with col: |
|
m = leaf_folium.Map() |
|
m.add_tile_layer( |
|
esri_url, |
|
name=esri_title, |
|
attribution="Esri", |
|
) |
|
add_geometry_to_maps([m], geometry_gdf, buffer_geometry_gdf) |
|
write_info( |
|
f""" |
|
<div style="text-align: center;"> |
|
Esri Imagery - {esri_date.strftime('%Y-%m-%d')} |
|
</div> |
|
""" |
|
) |
|
m.to_streamlit() |
|
|
|
for name, key in zip( |
|
["RGB (Least Cloud Tile Crop)", "RGB (Max NDVI Mosaic)"], |
|
["image_visual_least_cloud", "mosaic_visual_max_ndvi"], |
|
): |
|
st.write(f"<h3><div style='text-align: center;'>{name}</div></h3>", unsafe_allow_html=True) |
|
cols = st.columns(2) |
|
for col, daterange_str in zip(cols, [year_1, year_2]): |
|
start_date, end_date = daterange_str_to_dates(daterange_str) |
|
mid_date = start_date + (end_date - start_date) / 2 |
|
with col: |
|
m = gee_folium.Map() |
|
visual_mosaic = result_df.loc[daterange_str, key] |
|
|
|
|
|
m.add_layer(visual_mosaic.select(["R", "G", "B"])) |
|
add_geometry_to_maps([m], geometry_gdf, buffer_geometry_gdf) |
|
m.to_streamlit() |
|
|
|
|
|
show_credits() |
|
|