File size: 22,180 Bytes
cdab240 f3f89d3 b7947a8 f3f89d3 522f037 f3f89d3 4466df0 f3f89d3 b7947a8 f3f89d3 cdab240 e210de0 debe350 f3f89d3 b7947a8 cdab240 0812914 cdab240 b7947a8 cdab240 0812914 cdab240 0812914 b7947a8 cdab240 6e56783 b7947a8 d35782f cdab240 b7947a8 d35782f cdab240 d35782f cdab240 d35782f cdab240 317855d d35782f bb7c6c8 6e56783 bb7c6c8 f3f89d3 cdab240 6e56783 cdab240 c0d8523 cdab240 114dd95 1f25e7b 08dee16 0105922 6e56783 06892c7 1f25e7b 6e56783 e210de0 0254960 cdab240 6e56783 cdab240 317855d f75123f 317855d cdab240 317855d 0254960 b7947a8 cdab240 b7947a8 913bc56 cdab240 b7947a8 cdab240 317855d f3f89d3 b7947a8 317855d f3f89d3 8325c56 cdab240 317855d cdab240 4466df0 cdab240 b7947a8 cdab240 f3f89d3 cdab240 d35782f 4466df0 f3f89d3 cdab240 f3f89d3 b7947a8 6e56783 b7947a8 6e56783 b7947a8 6e56783 b7947a8 f3f89d3 4466df0 f3f89d3 4466df0 b7947a8 cdab240 522f037 4466df0 b7947a8 4466df0 b7947a8 4466df0 b7947a8 cdab240 b7947a8 4466df0 b7947a8 6e56783 b7947a8 6e56783 b7947a8 cdab240 b7947a8 6e56783 b7947a8 150cd0a b7947a8 4466df0 6e56783 f3f89d3 b7947a8 f3f89d3 b7947a8 f3f89d3 6e56783 b7947a8 6e56783 f3f89d3 b7947a8 f3f89d3 b7947a8 cdab240 b7947a8 6e56783 4466df0 cdab240 fa24862 c00bfce 127d480 b0f18ce cdab240 c91af81 cdab240 0254960 b7947a8 cdab240 05de1d2 c175a0b cdab240 b7947a8 4466df0 b7947a8 cdab240 f3f89d3 cdab240 6e56783 b7947a8 cdab240 b7947a8 6e56783 a3fa426 317855d cdab240 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 |
##############################################
# Imports
##############################################
import os
from datetime import datetime
import ee
import json
import numpy as np
import geemap.foliumap as gee_folium
import leafmap.foliumap as leaf_folium
import streamlit as st
import pandas as pd
import plotly.express as px
import branca.colormap as cm
from functions import *
import xml.etree.ElementTree as ET
st.set_page_config(layout="wide")
############################################
# IITGN and GDF Logo
############################################
st.write(
f"""
<div style="display: flex; justify-content: space-between; align-items: center;">
<img src="https://huggingface.co./spaces/SustainabilityLabIITGN/NDVI_PERG/resolve/main/Final_IITGN-Logo-symmetric-Color.png" style="width: 10%; margin-right: auto;">
<img src="https://huggingface.co./spaces/SustainabilityLabIITGN/NDVI_PERG/resolve/main/IFS.jpg" style="width: 10%; margin-left: auto;">
</div>
""",
unsafe_allow_html=True,
)
############################################
# Title
############################################
st.markdown(
f"""
<h1 style="text-align: center;">Kamlan: KML Analyzer</h1>
""",
unsafe_allow_html=True,
)
############################################
# KML/GeoJSON input
############################################
# Input: GeoJSON/KML file
file_url = st.query_params.get("file_url", None)
if file_url is None:
file_url = st.file_uploader("Upload KML/GeoJSON file", type=["geojson", "kml"])
if file_url is None:
st.warning(
"Please provide a KML or GeoJSON URL as a query parameter, e.g., `https://sustainabilitylabiitgn-ndvi-perg.hf.space?file_url=<your_file_url>` or upload a file."
)
force_stop()
# process the file
if ("cached_file_url" in st.session_state) and (st.session_state.cached_file_url == file_url):
input_gdf = st.session_state.input_gdf
geometry_gdf = st.session_state.geometry_gdf
else:
input_gdf = get_gdf_from_file_url(file_url)
input_gdf = preprocess_gdf(input_gdf)
for i in range(len(input_gdf)):
geometry_gdf = input_gdf[input_gdf.index == i]
if is_valid_polygon(geometry_gdf):
break
else:
st.error(f"No polygon found inside KML. Please check the KML file.")
force_stop()
geometry_gdf = to_best_crs(geometry_gdf)
st.session_state.input_gdf = input_gdf
st.session_state.geometry_gdf = geometry_gdf
st.session_state.cached_file_url = file_url
############################################
# App
############################################
container = st.container()
# metrics_view_placeholder = st.empty()
# view_on_google_maps_placeholder = st.empty()
# download_metrics_placeholder = st.empty()
# dem_placeholder = st.empty()
with st.expander("Advanced Settings"):
st.write("Select the vegetation indices to calculate:")
all_veg_indices = ["NDVI", "EVI", "EVI2"]
formulas = {
"NDVI": r"$\frac{NIR - Red}{NIR + Red}$",
"EVI": r"$G \times \frac{NIR - Red}{NIR + C1 \times Red - C2 \times Blue + L}$",
"EVI2": r"$G \times \frac{NIR - Red}{NIR + L + C \times Red}$",
}
defaults = [True, False, False]
veg_indices = []
for veg_index, default in zip(all_veg_indices, defaults):
if st.checkbox(f"{veg_index} = {formulas[veg_index]}", value=default):
veg_indices.append(veg_index)
st.write("Select the parameters for the EVI/EVI2 calculation (default is as per EVI's Wikipedia page)")
cols = st.columns(5)
evi_vars = {}
for col, name, default in zip(cols, ["G", "C1", "C2", "L", "C"], [2.5, 6, 7.5, 1, 2.4]):
value = col.number_input(f"{name}", value=default)
evi_vars[name] = value
# Date range input
max_year = datetime.now().year
jan_1 = pd.to_datetime(f"{max_year}/01/01", format="%Y/%m/%d")
dec_31 = pd.to_datetime(f"{max_year}/12/31", format="%Y/%m/%d")
nov_15 = pd.to_datetime(f"{max_year}/11/15", format="%Y/%m/%d")
dec_15 = pd.to_datetime(f"{max_year}/12/15", format="%Y/%m/%d")
input_daterange = st.date_input(
'Date Range (Ignore year. App will compute indices for this date range in each year starting from "Minimum Year" to "Maximum Year")',
(nov_15, dec_15),
jan_1,
dec_31,
)
cols = st.columns(2)
with cols[0]:
min_year = int(st.number_input("Minimum Year", value=2019, min_value=2015, step=1))
with cols[1]:
max_year = int(st.number_input("Maximum Year", value=max_year, min_value=2015, step=1))
buffer = st.number_input("Buffer (m)", value=50, min_value=0, step=1)
if len(input_gdf) > 1:
with container:
st.warning(f"Only the first polygon in the KML is processed; all other geometries are ignored.")
# input_geometry_idx = st.selectbox("Select the geometry", input_gdf.index, format_func=format_fn)
outer_geometry_gdf = geometry_gdf.copy()
outer_geometry_gdf["geometry"] = outer_geometry_gdf["geometry"].buffer(buffer)
buffer_geometry_gdf = (
outer_geometry_gdf.difference(geometry_gdf).reset_index().drop(columns="index")
) # reset index forces GeoSeries to GeoDataFrame
buffer_geometry_gdf["Name"] = "Buffer"
# Get Wayback data
# <old code>
# wayback_df = pd.read_parquet("./wayback.parquet").set_index("date")
# </old code>
# <new code 2nd Feb 2025 by Zeel>
# Fetch XML data
url = "https://wayback.maptiles.arcgis.com/arcgis/rest/services/World_Imagery/MapServer/WMTS/1.0.0/WMTSCapabilities.xml"
response = requests.get(url)
response.raise_for_status() # Ensure request was successful
# Parse XML
root = ET.fromstring(response.content)
ns = {
"wmts": "https://www.opengis.net/wmts/1.0",
"ows": "https://www.opengis.net/ows/1.1",
"xlink": "https://www.w3.org/1999/xlink",
}
layers = root.findall(".//wmts:Contents/wmts:Layer", ns)
layer_data = []
for layer in layers:
title = layer.find("ows:Title", ns)
identifier = layer.find("ows:Identifier", ns)
resource = layer.find("wmts:ResourceURL", ns) # Tile URL template
title_text = title.text if title is not None else "N/A"
identifier_text = identifier.text if identifier is not None else "N/A"
url_template = resource.get("template") if resource is not None else "N/A"
layer_data.append({"Title": title_text, "ResourceURL_Template": url_template})
wayback_df = pd.DataFrame(layer_data)
wayback_df["date"] = pd.to_datetime(wayback_df["Title"].str.extract(r"(\d{4}-\d{2}-\d{2})").squeeze(), errors="coerce")
wayback_df.set_index("date", inplace=True)
print(wayback_df)
# </new code 2nd Feb 2025 by Zeel>
# visualize the geometry
first_item = wayback_df.iloc[0]
wayback_title = "Esri " + first_item["Title"]
wayback_url = (
first_item["ResourceURL_Template"]
.replace("{TileMatrixSet}", "GoogleMapsCompatible")
.replace("{TileMatrix}", "{z}")
.replace("{TileRow}", "{y}")
.replace("{TileCol}", "{x}")
)
# print(wayback_url)
with container:
map_type = st.radio(
"",
["Esri Satellite Map", "Google Hybrid Map (displays place names)", "Google Satellite Map"],
horizontal=True,
)
m = leaf_folium.Map()
if map_type == "Google Hybrid Map (displays place names)":
write_info("Google Hybrid Map (displays place names)", center_align=True)
m.add_basemap("HYBRID")
elif map_type == "Google Satellite Map":
write_info("Google Satellite Map", center_align=True)
m.add_basemap("SATELLITE")
elif map_type == "Esri Satellite Map":
write_info(wayback_title, center_align=True)
m.add_wms_layer(
wayback_url,
layers="0",
name=wayback_title,
attribution="Esri",
)
else:
st.error("Invalid map type")
force_stop()
add_geometry_to_maps([m], geometry_gdf, buffer_geometry_gdf, opacity=0.3)
m.to_streamlit()
# Generate stats
centroid = geometry_gdf.to_crs(4326).centroid.item()
centroid_lon = centroid.xy[0][0]
centroid_lat = centroid.xy[1][0]
stats_df = pd.DataFrame(
{
"Area (m^2)": geometry_gdf.area.item(),
"Perimeter (m)": geometry_gdf.length.item(),
"Points": str(json.loads(geometry_gdf.to_crs(4326).to_json())["features"][0]["geometry"]["coordinates"]),
"Centroid": f"({centroid_lat:.6f}, {centroid_lon:.6f})",
},
index=[0],
)
gmaps_redirect_url = f"http://maps.google.com/maps?q={centroid_lat},{centroid_lon}&layer=satellite"
with container:
st.markdown(
f"""
<div style="display: flex; justify-content: center;">
<table style="border-collapse: collapse; text-align: center;">
<tr>
<th style="border: 1px solid black; text-align: left;">Metric</th>
<th style="border: 1px solid black; text-align: right;">Value</th>
<th style="border: 1px solid black; text-align: left;">Unit</th>
</tr>
<tr>
<td style="border: 1px solid black; text-align: left;">Area</td>
<td style="border: 1px solid black; text-align: right;">{stats_df['Area (m^2)'].item()/10000:.2f}</td>
<td style="border: 1px solid black; text-align: left;">ha</td>
</tr>
<tr>
<td style="border: 1px solid black; text-align: left;">Perimeter</td>
<td style="border: 1px solid black; text-align: right;">{stats_df['Perimeter (m)'].item():.2f}</td>
<td style="border: 1px solid black; text-align: left;">m</td>
</tr>
<tr>
<td style="border: 1px solid black; text-align: left;">Centroid</td>
<td style="border: 1px solid black; text-align: right;">({centroid_lat:.6f}, {centroid_lon:.6f})</td>
<td style="border: 1px solid black; text-align: left;">(lat, lon)</td>
</table>
</div>
<div style="text-align: center; margin-bottom: 10px;">
<a href="{gmaps_redirect_url}" target="_blank">
<button>View on Google Maps</button>
</a>
</div>
""",
unsafe_allow_html=True,
)
stats_csv = stats_df.to_csv(index=False)
with container:
st.download_button(
"Download Geometry Metrics", stats_csv, "geometry_metrics.csv", "text/csv", use_container_width=True
)
# Run one-time setup
if "one_time_setup_done" not in st.session_state:
one_time_setup()
st.session_state.one_time_setup_done = True
if ("cached_dem_maps" in st.session_state) and (st.session_state.cached_file_url == file_url):
dem_map = st.session_state.dem_map
slope_map = st.session_state.slope_map
else:
dem_map, slope_map = get_dem_slope_maps(
ee.Geometry(geometry_gdf.to_crs(4326).geometry.item().__geo_interface__), wayback_url, wayback_title
)
st.session_state.dem_map = dem_map
st.session_state.slope_map = slope_map
st.session_state.cached_dem_maps = True
with container:
st.write(
"<h3><div style='text-align: center;'>DEM and Slope from SRTM at 30m resolution</div></h3>",
unsafe_allow_html=True,
)
cols = st.columns(2)
for col, param_map, title in zip(cols, [dem_map, slope_map], ["DEM Map", "Slope Map"]):
with col:
param_map.add_gdf(
geometry_gdf,
layer_name="Geometry",
style_function=lambda x: {"color": "blue", "fillOpacity": 0.0, "fillColor": "blue"},
)
write_info(f"""<div style="text-align: center;">{title}</div>""")
param_map.addLayerControl()
param_map.to_streamlit()
# Submit
m = st.markdown(
"""
<style>
div.stButton > button:first-child {
background-color: #006400;
color:#ffffff;
}
</style>""",
unsafe_allow_html=True,
)
submit = st.button("Calculate Vegetation Indices", use_container_width=True)
# Derived Inputs
ee_geometry = ee.Geometry(geometry_gdf.to_crs(4326).geometry.item().__geo_interface__)
ee_feature_collection = ee.FeatureCollection(ee_geometry)
buffer_ee_geometry = ee.Geometry(buffer_geometry_gdf.to_crs(4326).geometry.item().__geo_interface__)
buffer_ee_feature_collection = ee.FeatureCollection(buffer_ee_geometry)
outer_ee_geometry = ee.Geometry(outer_geometry_gdf.to_crs(4326).geometry.item().__geo_interface__)
outer_ee_feature_collection = ee.FeatureCollection(outer_ee_geometry)
if submit:
satellites = {
"COPERNICUS/S2_SR_HARMONIZED": {
"scale": 10,
"collection": ee.ImageCollection("COPERNICUS/S2_SR_HARMONIZED")
.select(
["B2", "B4", "B8", "MSK_CLDPRB", "TCI_R", "TCI_G", "TCI_B"],
["Blue", "Red", "NIR", "MSK_CLDPRB", "R", "G", "B"],
)
.map(lambda image: add_indices(image, nir_band="NIR", red_band="Red", blue_band="Blue", evi_vars=evi_vars)),
},
}
satellite = list(satellites.keys())[0]
st.session_state.satellites = satellites
st.session_state.satellite = satellite
# Input: Satellite Sources
st.markdown(f"Satellite source: `{satellite}`")
satellite_selected = {}
for satellite in satellites:
satellite_selected[satellite] = satellite
st.write("<h2><div style='text-align: center;'>Results</div></h2>", unsafe_allow_html=True)
if not any(satellite_selected.values()):
st.error("Please select at least one satellite source")
force_stop()
# Create range
start_day = input_daterange[0].day
start_month = input_daterange[0].month
end_day = input_daterange[1].day
end_month = input_daterange[1].month
dates = []
for year in range(min_year, max_year + 1):
start_date = pd.to_datetime(f"{year}-{start_month:02d}-{start_day:02d}")
end_date = pd.to_datetime(f"{year}-{end_month:02d}-{end_day:02d}")
dates.append((start_date, end_date))
result_df = pd.DataFrame()
for satellite, attrs in satellites.items():
if not satellite_selected[satellite]:
continue
with st.spinner(f"Processing {satellite} ..."):
progress_bar = st.progress(0)
for i, daterange in enumerate(dates):
process_date(
daterange,
satellite,
veg_indices,
satellites,
buffer_ee_geometry,
ee_feature_collection,
buffer_ee_feature_collection,
result_df,
)
progress_bar.progress((i + 1) / len(dates))
st.session_state.result = result_df
print("Printing result...")
if "result" in st.session_state:
result_df = st.session_state.result
satellites = st.session_state.satellites
satellite = st.session_state.satellite
print(result_df.columns)
# drop rows with all NaN values
result_df = result_df.dropna(how="all")
# drop columns with all NaN values
result_df = result_df.dropna(axis=1, how="all")
print(result_df.columns)
print(result_df.head(2))
# df.reset_index(inplace=True)
# df.index = pd.to_datetime(df["index"], format="%Y-%m")
for column in result_df.columns:
result_df[column] = pd.to_numeric(result_df[column], errors="ignore")
df_numeric = result_df.select_dtypes(include=["float64"])
# df_numeric.index.name = "Date Range"
html = df_numeric.style.format(precision=2).set_properties(**{"text-align": "right"}).to_html()
st.write(
f"""<div style="display: flex; justify-content: center;">
{html}</div>""",
unsafe_allow_html=True,
)
df_numeric_csv = df_numeric.to_csv(index=True)
st.download_button(
"Download Time Series Data", df_numeric_csv, "vegetation_indices.csv", "text/csv", use_container_width=True
)
df_numeric.index = [daterange_str_to_year(daterange) for daterange in df_numeric.index]
for veg_index in veg_indices:
fig = px.line(df_numeric, y=[veg_index, f"{veg_index}_buffer", f"{veg_index}_ratio"], markers=True)
fig.update_layout(xaxis=dict(tickvals=df_numeric.index, ticktext=df_numeric.index))
st.plotly_chart(fig)
st.write(
"<h3><div style='text-align: center;'>Visual Comparison between Two Years</div></h3>", unsafe_allow_html=True
)
cols = st.columns(2)
with cols[0]:
year_1 = st.selectbox("Year 1", result_df.index, index=0, format_func=lambda x: daterange_str_to_year(x))
with cols[1]:
year_2 = st.selectbox(
"Year 2", result_df.index, index=len(result_df.index) - 1, format_func=lambda x: daterange_str_to_year(x)
)
vis_params = {"min": 0, "max": 1, "palette": ["white", "green"]} # Example visualisation for Sentinel-2
# Create a colormap and name it as NDVI
colormap = cm.LinearColormap(colors=vis_params["palette"], vmin=vis_params["min"], vmax=vis_params["max"])
for veg_index in veg_indices:
st.write(f"<h3><div style='text-align: center;'>{veg_index}</div></h3>", unsafe_allow_html=True)
cols = st.columns(2)
for col, daterange_str in zip(cols, [year_1, year_2]):
mosaic = result_df.loc[daterange_str, f"mosaic_{veg_index}"]
with col:
m = gee_folium.Map()
m.add_tile_layer(
wayback_url,
name=wayback_title,
attribution="Esri",
)
veg_index_layer = gee_folium.ee_tile_layer(mosaic, {"bands": [veg_index], "min": 0, "max": 1})
if satellite == "COPERNICUS/S2_SR_HARMONIZED":
min_all = 0
max_all = 255
else:
raise ValueError(f"Unknown satellite: {satellite}")
if veg_index == "NDVI":
bins = [-1, 0, 0.1, 0.2, 0.3, 0.4, 0.5, 1]
histogram, bin_edges = get_histogram(mosaic.select(veg_index), ee_geometry, bins)
total_pix = np.sum(histogram)
formatted_histogram = [f"{h*100/total_pix:.2f}" for h in histogram]
print(histogram, bin_edges, bins, formatted_histogram)
m.add_legend(
title="NDVI Class/Value",
legend_dict={
"<0:Waterbody ({}%)".format(formatted_histogram[0]): "#0000FF",
"0-0.1: Open ({}%)".format(formatted_histogram[1]): "#FF0000",
"0.1-0.2: Highly Degraded ({}%)".format(formatted_histogram[2]): "#FFFF00",
"0.2-0.3: Degraded ({}%)".format(formatted_histogram[3]): "#FFA500",
"0.3-0.4: Moderately Degraded ({}%)".format(formatted_histogram[4]): "#00FE00",
"0.4-0.5: Dense ({}%)".format(formatted_histogram[5]): "#00A400",
">0.5: Very Dense ({}%)".format(formatted_histogram[6]): "#006D00",
},
position="bottomright",
draggable=False,
)
ndvi_vis_params = {
"min": -0.1,
"max": 0.6,
"palette": ["#0000FF", "#FF0000", "#FFFF00", "#FFA500", "#00FE00", "#00A400", "#006D00"],
}
m.add_layer(mosaic.select(veg_index).clip(outer_ee_geometry), ndvi_vis_params)
# add colorbar
# m.add_colorbar(colors=["#000000", "#00FF00"], vmin=0.0, vmax=1.0)
if veg_index != "NDVI":
m.add_layer(mosaic.select(veg_index).clip(outer_ee_geometry), vis_params)
m.add_child(colormap)
add_geometry_to_maps([m], geometry_gdf, buffer_geometry_gdf)
m.to_streamlit()
st.write("<h3><div style='text-align: center;'>Esri RGB Imagery</div></h3>", unsafe_allow_html=True)
cols = st.columns(2)
for col, daterange_str in zip(cols, [year_1, year_2]):
start_date, end_date = daterange_str_to_dates(daterange_str)
mid_date = start_date + (end_date - start_date) / 2
esri_date = min(wayback_df.index, key=lambda x: abs(x - mid_date))
esri_url = (
wayback_df.loc[esri_date, "ResourceURL_Template"]
.replace("{TileMatrixSet}", "GoogleMapsCompatible")
.replace("{TileMatrix}", "{z}")
.replace("{TileRow}", "{y}")
.replace("{TileCol}", "{x}")
)
esri_title = "Esri " + wayback_df.loc[esri_date, "Title"]
with col:
m = leaf_folium.Map()
m.add_tile_layer(
esri_url,
name=esri_title,
attribution="Esri",
)
add_geometry_to_maps([m], geometry_gdf, buffer_geometry_gdf)
write_info(
f"""
<div style="text-align: center;">
Esri Imagery - {esri_date.strftime('%Y-%m-%d')}
</div>
"""
)
m.to_streamlit()
for name, key in zip(
["RGB (Least Cloud Tile Crop)", "RGB (Max NDVI Mosaic)"],
["image_visual_least_cloud", "mosaic_visual_max_ndvi"],
):
st.write(f"<h3><div style='text-align: center;'>{name}</div></h3>", unsafe_allow_html=True)
cols = st.columns(2)
for col, daterange_str in zip(cols, [year_1, year_2]):
start_date, end_date = daterange_str_to_dates(daterange_str)
mid_date = start_date + (end_date - start_date) / 2
with col:
m = gee_folium.Map()
visual_mosaic = result_df.loc[daterange_str, key]
# visual_layer = gee_folium.ee_tile_layer(mosaic, {"bands": ["R", "G", "B"], "min": min_all, "max": max_all})
m.add_layer(visual_mosaic.select(["R", "G", "B"]))
add_geometry_to_maps([m], geometry_gdf, buffer_geometry_gdf)
m.to_streamlit()
show_credits()
|