File size: 22,180 Bytes
cdab240
 
 
 
f3f89d3
b7947a8
f3f89d3
 
522f037
f3f89d3
 
 
4466df0
f3f89d3
b7947a8
f3f89d3
cdab240
e210de0
debe350
f3f89d3
b7947a8
cdab240
 
 
0812914
 
 
 
 
 
 
 
 
 
cdab240
b7947a8
cdab240
 
0812914
 
cdab240
0812914
 
 
b7947a8
 
cdab240
6e56783
b7947a8
d35782f
 
 
cdab240
b7947a8
d35782f
 
cdab240
d35782f
cdab240
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d35782f
cdab240
 
 
 
 
 
 
 
317855d
 
 
 
 
 
d35782f
 
 
 
 
 
 
 
 
 
 
 
 
bb7c6c8
 
 
 
6e56783
bb7c6c8
f3f89d3
cdab240
 
 
 
 
 
 
 
 
 
 
6e56783
cdab240
 
 
 
 
c0d8523
cdab240
114dd95
1f25e7b
08dee16
0105922
6e56783
06892c7
1f25e7b
6e56783
 
 
 
 
 
 
e210de0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0254960
cdab240
 
 
 
 
 
 
 
6e56783
cdab240
 
317855d
f75123f
 
 
 
 
317855d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cdab240
317855d
 
0254960
b7947a8
cdab240
 
 
b7947a8
 
 
 
913bc56
cdab240
 
 
b7947a8
cdab240
 
317855d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f3f89d3
b7947a8
317855d
 
 
 
f3f89d3
8325c56
 
 
 
 
cdab240
 
 
 
 
 
 
 
 
 
 
317855d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cdab240
4466df0
cdab240
 
 
 
 
 
 
 
 
 
b7947a8
 
cdab240
 
 
 
 
 
 
 
f3f89d3
cdab240
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d35782f
4466df0
f3f89d3
cdab240
f3f89d3
b7947a8
 
 
 
 
6e56783
b7947a8
6e56783
b7947a8
 
 
6e56783
b7947a8
f3f89d3
4466df0
f3f89d3
4466df0
 
 
b7947a8
cdab240
 
 
 
 
 
 
 
 
 
522f037
4466df0
b7947a8
4466df0
b7947a8
4466df0
b7947a8
cdab240
 
 
b7947a8
4466df0
b7947a8
 
 
 
 
 
6e56783
b7947a8
 
 
 
6e56783
b7947a8
cdab240
 
 
 
 
 
 
b7947a8
6e56783
 
 
 
b7947a8
 
150cd0a
b7947a8
 
4466df0
6e56783
 
 
f3f89d3
b7947a8
f3f89d3
b7947a8
f3f89d3
6e56783
 
 
 
 
b7947a8
 
6e56783
f3f89d3
b7947a8
 
 
 
 
f3f89d3
b7947a8
cdab240
 
 
 
 
b7947a8
6e56783
4466df0
 
 
 
 
 
cdab240
 
fa24862
c00bfce
127d480
b0f18ce
cdab240
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c91af81
cdab240
0254960
b7947a8
cdab240
 
05de1d2
c175a0b
cdab240
b7947a8
4466df0
b7947a8
 
 
 
 
cdab240
 
 
 
 
 
 
 
 
f3f89d3
 
cdab240
 
 
 
 
 
6e56783
 
b7947a8
cdab240
b7947a8
6e56783
 
a3fa426
 
317855d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cdab240
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
##############################################
# Imports
##############################################

import os
from datetime import datetime
import ee
import json
import numpy as np
import geemap.foliumap as gee_folium
import leafmap.foliumap as leaf_folium
import streamlit as st
import pandas as pd
import plotly.express as px
import branca.colormap as cm

from functions import *
import xml.etree.ElementTree as ET

st.set_page_config(layout="wide")

############################################
# IITGN and GDF Logo
############################################
st.write(
    f"""
    <div style="display: flex; justify-content: space-between; align-items: center;">
        <img src="https://huggingface.co./spaces/SustainabilityLabIITGN/NDVI_PERG/resolve/main/Final_IITGN-Logo-symmetric-Color.png"  style="width: 10%; margin-right: auto;">
        <img src="https://huggingface.co./spaces/SustainabilityLabIITGN/NDVI_PERG/resolve/main/IFS.jpg" style="width: 10%; margin-left: auto;">
    </div>
    """,
    unsafe_allow_html=True,
)

############################################
# Title
############################################

st.markdown(
    f"""
    <h1 style="text-align: center;">Kamlan: KML Analyzer</h1>
    """,
    unsafe_allow_html=True,
)

############################################
# KML/GeoJSON input
############################################

# Input: GeoJSON/KML file
file_url = st.query_params.get("file_url", None)
if file_url is None:
    file_url = st.file_uploader("Upload KML/GeoJSON file", type=["geojson", "kml"])

if file_url is None:
    st.warning(
        "Please provide a KML or GeoJSON URL as a query parameter, e.g., `https://sustainabilitylabiitgn-ndvi-perg.hf.space?file_url=<your_file_url>` or upload a file."
    )
    force_stop()

# process the file

if ("cached_file_url" in st.session_state) and (st.session_state.cached_file_url == file_url):
    input_gdf = st.session_state.input_gdf
    geometry_gdf = st.session_state.geometry_gdf
else:
    input_gdf = get_gdf_from_file_url(file_url)
    input_gdf = preprocess_gdf(input_gdf)

    for i in range(len(input_gdf)):
        geometry_gdf = input_gdf[input_gdf.index == i]
        if is_valid_polygon(geometry_gdf):
            break
    else:
        st.error(f"No polygon found inside KML. Please check the KML file.")
        force_stop()

    geometry_gdf = to_best_crs(geometry_gdf)
    st.session_state.input_gdf = input_gdf
    st.session_state.geometry_gdf = geometry_gdf
    st.session_state.cached_file_url = file_url

############################################
# App
############################################
container = st.container()
# metrics_view_placeholder = st.empty()
# view_on_google_maps_placeholder = st.empty()
# download_metrics_placeholder = st.empty()
# dem_placeholder = st.empty()

with st.expander("Advanced Settings"):
    st.write("Select the vegetation indices to calculate:")
    all_veg_indices = ["NDVI", "EVI", "EVI2"]
    formulas = {
        "NDVI": r"$\frac{NIR - Red}{NIR + Red}$",
        "EVI": r"$G \times \frac{NIR - Red}{NIR + C1 \times Red - C2 \times Blue + L}$",
        "EVI2": r"$G \times \frac{NIR - Red}{NIR + L + C \times Red}$",
    }
    defaults = [True, False, False]
    veg_indices = []
    for veg_index, default in zip(all_veg_indices, defaults):
        if st.checkbox(f"{veg_index} = {formulas[veg_index]}", value=default):
            veg_indices.append(veg_index)
    st.write("Select the parameters for the EVI/EVI2 calculation (default is as per EVI's Wikipedia page)")
    cols = st.columns(5)
    evi_vars = {}
    for col, name, default in zip(cols, ["G", "C1", "C2", "L", "C"], [2.5, 6, 7.5, 1, 2.4]):
        value = col.number_input(f"{name}", value=default)
        evi_vars[name] = value

    # Date range input
    max_year = datetime.now().year
    jan_1 = pd.to_datetime(f"{max_year}/01/01", format="%Y/%m/%d")
    dec_31 = pd.to_datetime(f"{max_year}/12/31", format="%Y/%m/%d")
    nov_15 = pd.to_datetime(f"{max_year}/11/15", format="%Y/%m/%d")
    dec_15 = pd.to_datetime(f"{max_year}/12/15", format="%Y/%m/%d")
    input_daterange = st.date_input(
        'Date Range (Ignore year. App will compute indices for this date range in each year starting from "Minimum Year" to "Maximum Year")',
        (nov_15, dec_15),
        jan_1,
        dec_31,
    )
    cols = st.columns(2)
    with cols[0]:
        min_year = int(st.number_input("Minimum Year", value=2019, min_value=2015, step=1))
    with cols[1]:
        max_year = int(st.number_input("Maximum Year", value=max_year, min_value=2015, step=1))

    buffer = st.number_input("Buffer (m)", value=50, min_value=0, step=1)

if len(input_gdf) > 1:
    with container:
        st.warning(f"Only the first polygon in the KML is processed; all other geometries are ignored.")

# input_geometry_idx = st.selectbox("Select the geometry", input_gdf.index, format_func=format_fn)

outer_geometry_gdf = geometry_gdf.copy()
outer_geometry_gdf["geometry"] = outer_geometry_gdf["geometry"].buffer(buffer)
buffer_geometry_gdf = (
    outer_geometry_gdf.difference(geometry_gdf).reset_index().drop(columns="index")
)  # reset index forces GeoSeries to GeoDataFrame
buffer_geometry_gdf["Name"] = "Buffer"

# Get Wayback data
# <old code>
# wayback_df = pd.read_parquet("./wayback.parquet").set_index("date")
# </old code>
# <new code 2nd Feb 2025 by Zeel>
# Fetch XML data
url = "https://wayback.maptiles.arcgis.com/arcgis/rest/services/World_Imagery/MapServer/WMTS/1.0.0/WMTSCapabilities.xml"
response = requests.get(url)
response.raise_for_status()  # Ensure request was successful

# Parse XML
root = ET.fromstring(response.content)

ns = {
    "wmts": "https://www.opengis.net/wmts/1.0",
    "ows": "https://www.opengis.net/ows/1.1",
    "xlink": "https://www.w3.org/1999/xlink",
}

layers = root.findall(".//wmts:Contents/wmts:Layer", ns)

layer_data = []
for layer in layers:
    title = layer.find("ows:Title", ns)
    identifier = layer.find("ows:Identifier", ns)
    resource = layer.find("wmts:ResourceURL", ns)  # Tile URL template

    title_text = title.text if title is not None else "N/A"
    identifier_text = identifier.text if identifier is not None else "N/A"
    url_template = resource.get("template") if resource is not None else "N/A"

    layer_data.append({"Title": title_text, "ResourceURL_Template": url_template})

wayback_df = pd.DataFrame(layer_data)
wayback_df["date"] = pd.to_datetime(wayback_df["Title"].str.extract(r"(\d{4}-\d{2}-\d{2})").squeeze(), errors="coerce")
wayback_df.set_index("date", inplace=True)
print(wayback_df)

# </new code 2nd Feb 2025 by Zeel>

# visualize the geometry
first_item = wayback_df.iloc[0]
wayback_title = "Esri " + first_item["Title"]
wayback_url = (
    first_item["ResourceURL_Template"]
    .replace("{TileMatrixSet}", "GoogleMapsCompatible")
    .replace("{TileMatrix}", "{z}")
    .replace("{TileRow}", "{y}")
    .replace("{TileCol}", "{x}")
)
# print(wayback_url)

with container:
    map_type = st.radio(
        "",
        ["Esri Satellite Map", "Google Hybrid Map (displays place names)", "Google Satellite Map"],
        horizontal=True,
    )
    m = leaf_folium.Map()
    if map_type == "Google Hybrid Map (displays place names)":
        write_info("Google Hybrid Map (displays place names)", center_align=True)
        m.add_basemap("HYBRID")
    elif map_type == "Google Satellite Map":
        write_info("Google Satellite Map", center_align=True)
        m.add_basemap("SATELLITE")
    elif map_type == "Esri Satellite Map":
        write_info(wayback_title, center_align=True)
        m.add_wms_layer(
            wayback_url,
            layers="0",
            name=wayback_title,
            attribution="Esri",
        )
    else:
        st.error("Invalid map type")
        force_stop()

    add_geometry_to_maps([m], geometry_gdf, buffer_geometry_gdf, opacity=0.3)
    m.to_streamlit()

# Generate stats
centroid = geometry_gdf.to_crs(4326).centroid.item()
centroid_lon = centroid.xy[0][0]
centroid_lat = centroid.xy[1][0]
stats_df = pd.DataFrame(
    {
        "Area (m^2)": geometry_gdf.area.item(),
        "Perimeter (m)": geometry_gdf.length.item(),
        "Points": str(json.loads(geometry_gdf.to_crs(4326).to_json())["features"][0]["geometry"]["coordinates"]),
        "Centroid": f"({centroid_lat:.6f}, {centroid_lon:.6f})",
    },
    index=[0],
)

gmaps_redirect_url = f"http://maps.google.com/maps?q={centroid_lat},{centroid_lon}&layer=satellite"
with container:
    st.markdown(
        f"""
        <div style="display: flex; justify-content: center;">
            <table style="border-collapse: collapse; text-align: center;">
                <tr>
                    <th style="border: 1px solid black; text-align: left;">Metric</th>
                    <th style="border: 1px solid black; text-align: right;">Value</th>
                    <th style="border: 1px solid black; text-align: left;">Unit</th>
                </tr>
                <tr>
                    <td style="border: 1px solid black; text-align: left;">Area</td>
                    <td style="border: 1px solid black; text-align: right;">{stats_df['Area (m^2)'].item()/10000:.2f}</td>
                    <td style="border: 1px solid black; text-align: left;">ha</td>
                </tr>
                <tr>
                    <td style="border: 1px solid black; text-align: left;">Perimeter</td>
                    <td style="border: 1px solid black; text-align: right;">{stats_df['Perimeter (m)'].item():.2f}</td>
                    <td style="border: 1px solid black; text-align: left;">m</td>
                </tr>
                <tr>
                    <td style="border: 1px solid black; text-align: left;">Centroid</td>
                    <td style="border: 1px solid black; text-align: right;">({centroid_lat:.6f}, {centroid_lon:.6f})</td>
                    <td style="border: 1px solid black; text-align: left;">(lat, lon)</td>
            </table>
        </div>
        <div style="text-align: center; margin-bottom: 10px;">
            <a href="{gmaps_redirect_url}" target="_blank">
            <button>View on Google Maps</button>
        </a>
        </div>
        """,
        unsafe_allow_html=True,
    )

stats_csv = stats_df.to_csv(index=False)
with container:
    st.download_button(
        "Download Geometry Metrics", stats_csv, "geometry_metrics.csv", "text/csv", use_container_width=True
    )

# Run one-time setup
if "one_time_setup_done" not in st.session_state:
    one_time_setup()
    st.session_state.one_time_setup_done = True

if ("cached_dem_maps" in st.session_state) and (st.session_state.cached_file_url == file_url):
    dem_map = st.session_state.dem_map
    slope_map = st.session_state.slope_map
else:
    dem_map, slope_map = get_dem_slope_maps(
        ee.Geometry(geometry_gdf.to_crs(4326).geometry.item().__geo_interface__), wayback_url, wayback_title
    )
    st.session_state.dem_map = dem_map
    st.session_state.slope_map = slope_map
    st.session_state.cached_dem_maps = True

with container:
    st.write(
        "<h3><div style='text-align: center;'>DEM and Slope from SRTM at 30m resolution</div></h3>",
        unsafe_allow_html=True,
    )
    cols = st.columns(2)
    for col, param_map, title in zip(cols, [dem_map, slope_map], ["DEM Map", "Slope Map"]):
        with col:
            param_map.add_gdf(
                geometry_gdf,
                layer_name="Geometry",
                style_function=lambda x: {"color": "blue", "fillOpacity": 0.0, "fillColor": "blue"},
            )
            write_info(f"""<div style="text-align: center;">{title}</div>""")
            param_map.addLayerControl()
            param_map.to_streamlit()

# Submit
m = st.markdown(
    """
<style>
div.stButton > button:first-child {
    background-color: #006400;
    color:#ffffff;
}
</style>""",
    unsafe_allow_html=True,
)
submit = st.button("Calculate Vegetation Indices", use_container_width=True)

# Derived Inputs
ee_geometry = ee.Geometry(geometry_gdf.to_crs(4326).geometry.item().__geo_interface__)
ee_feature_collection = ee.FeatureCollection(ee_geometry)
buffer_ee_geometry = ee.Geometry(buffer_geometry_gdf.to_crs(4326).geometry.item().__geo_interface__)
buffer_ee_feature_collection = ee.FeatureCollection(buffer_ee_geometry)
outer_ee_geometry = ee.Geometry(outer_geometry_gdf.to_crs(4326).geometry.item().__geo_interface__)
outer_ee_feature_collection = ee.FeatureCollection(outer_ee_geometry)

if submit:
    satellites = {
        "COPERNICUS/S2_SR_HARMONIZED": {
            "scale": 10,
            "collection": ee.ImageCollection("COPERNICUS/S2_SR_HARMONIZED")
            .select(
                ["B2", "B4", "B8", "MSK_CLDPRB", "TCI_R", "TCI_G", "TCI_B"],
                ["Blue", "Red", "NIR", "MSK_CLDPRB", "R", "G", "B"],
            )
            .map(lambda image: add_indices(image, nir_band="NIR", red_band="Red", blue_band="Blue", evi_vars=evi_vars)),
        },
    }
    satellite = list(satellites.keys())[0]
    st.session_state.satellites = satellites
    st.session_state.satellite = satellite

    # Input: Satellite Sources
    st.markdown(f"Satellite source: `{satellite}`")
    satellite_selected = {}
    for satellite in satellites:
        satellite_selected[satellite] = satellite

    st.write("<h2><div style='text-align: center;'>Results</div></h2>", unsafe_allow_html=True)
    if not any(satellite_selected.values()):
        st.error("Please select at least one satellite source")
        force_stop()

    # Create range
    start_day = input_daterange[0].day
    start_month = input_daterange[0].month
    end_day = input_daterange[1].day
    end_month = input_daterange[1].month

    dates = []
    for year in range(min_year, max_year + 1):
        start_date = pd.to_datetime(f"{year}-{start_month:02d}-{start_day:02d}")
        end_date = pd.to_datetime(f"{year}-{end_month:02d}-{end_day:02d}")
        dates.append((start_date, end_date))

    result_df = pd.DataFrame()
    for satellite, attrs in satellites.items():
        if not satellite_selected[satellite]:
            continue

        with st.spinner(f"Processing {satellite} ..."):
            progress_bar = st.progress(0)
            for i, daterange in enumerate(dates):
                process_date(
                    daterange,
                    satellite,
                    veg_indices,
                    satellites,
                    buffer_ee_geometry,
                    ee_feature_collection,
                    buffer_ee_feature_collection,
                    result_df,
                )
                progress_bar.progress((i + 1) / len(dates))

    st.session_state.result = result_df

print("Printing result...")
if "result" in st.session_state:
    result_df = st.session_state.result
    satellites = st.session_state.satellites
    satellite = st.session_state.satellite

    print(result_df.columns)

    # drop rows with all NaN values
    result_df = result_df.dropna(how="all")
    # drop columns with all NaN values
    result_df = result_df.dropna(axis=1, how="all")
    print(result_df.columns)
    print(result_df.head(2))

    # df.reset_index(inplace=True)
    # df.index = pd.to_datetime(df["index"], format="%Y-%m")
    for column in result_df.columns:
        result_df[column] = pd.to_numeric(result_df[column], errors="ignore")

    df_numeric = result_df.select_dtypes(include=["float64"])
    # df_numeric.index.name = "Date Range"
    html = df_numeric.style.format(precision=2).set_properties(**{"text-align": "right"}).to_html()
    st.write(
        f"""<div style="display: flex; justify-content: center;">
             {html}</div>""",
        unsafe_allow_html=True,
    )
    df_numeric_csv = df_numeric.to_csv(index=True)
    st.download_button(
        "Download Time Series Data", df_numeric_csv, "vegetation_indices.csv", "text/csv", use_container_width=True
    )

    df_numeric.index = [daterange_str_to_year(daterange) for daterange in df_numeric.index]
    for veg_index in veg_indices:
        fig = px.line(df_numeric, y=[veg_index, f"{veg_index}_buffer", f"{veg_index}_ratio"], markers=True)
        fig.update_layout(xaxis=dict(tickvals=df_numeric.index, ticktext=df_numeric.index))
        st.plotly_chart(fig)

    st.write(
        "<h3><div style='text-align: center;'>Visual Comparison between Two Years</div></h3>", unsafe_allow_html=True
    )
    cols = st.columns(2)

    with cols[0]:
        year_1 = st.selectbox("Year 1", result_df.index, index=0, format_func=lambda x: daterange_str_to_year(x))
    with cols[1]:
        year_2 = st.selectbox(
            "Year 2", result_df.index, index=len(result_df.index) - 1, format_func=lambda x: daterange_str_to_year(x)
        )

    vis_params = {"min": 0, "max": 1, "palette": ["white", "green"]}  # Example visualisation for Sentinel-2

    # Create a colormap and name it as NDVI
    colormap = cm.LinearColormap(colors=vis_params["palette"], vmin=vis_params["min"], vmax=vis_params["max"])

    for veg_index in veg_indices:
        st.write(f"<h3><div style='text-align: center;'>{veg_index}</div></h3>", unsafe_allow_html=True)
        cols = st.columns(2)
        for col, daterange_str in zip(cols, [year_1, year_2]):
            mosaic = result_df.loc[daterange_str, f"mosaic_{veg_index}"]
            with col:
                m = gee_folium.Map()
                m.add_tile_layer(
                    wayback_url,
                    name=wayback_title,
                    attribution="Esri",
                )
                veg_index_layer = gee_folium.ee_tile_layer(mosaic, {"bands": [veg_index], "min": 0, "max": 1})

                if satellite == "COPERNICUS/S2_SR_HARMONIZED":
                    min_all = 0
                    max_all = 255
                else:
                    raise ValueError(f"Unknown satellite: {satellite}")

                if veg_index == "NDVI":
                    bins = [-1, 0, 0.1, 0.2, 0.3, 0.4, 0.5, 1]
                    histogram, bin_edges = get_histogram(mosaic.select(veg_index), ee_geometry, bins)
                    total_pix = np.sum(histogram)
                    formatted_histogram = [f"{h*100/total_pix:.2f}" for h in histogram]
                    print(histogram, bin_edges, bins, formatted_histogram)
                    m.add_legend(
                        title="NDVI Class/Value",
                        legend_dict={
                            "<0:Waterbody ({}%)".format(formatted_histogram[0]): "#0000FF",
                            "0-0.1: Open ({}%)".format(formatted_histogram[1]): "#FF0000",
                            "0.1-0.2: Highly Degraded ({}%)".format(formatted_histogram[2]): "#FFFF00",
                            "0.2-0.3: Degraded ({}%)".format(formatted_histogram[3]): "#FFA500",
                            "0.3-0.4: Moderately Degraded ({}%)".format(formatted_histogram[4]): "#00FE00",
                            "0.4-0.5: Dense ({}%)".format(formatted_histogram[5]): "#00A400",
                            ">0.5: Very Dense ({}%)".format(formatted_histogram[6]): "#006D00",
                        },
                        position="bottomright",
                        draggable=False,
                    )
                    ndvi_vis_params = {
                        "min": -0.1,
                        "max": 0.6,
                        "palette": ["#0000FF", "#FF0000", "#FFFF00", "#FFA500", "#00FE00", "#00A400", "#006D00"],
                    }
                    m.add_layer(mosaic.select(veg_index).clip(outer_ee_geometry), ndvi_vis_params)

                # add colorbar
                # m.add_colorbar(colors=["#000000", "#00FF00"], vmin=0.0, vmax=1.0)

                if veg_index != "NDVI":
                    m.add_layer(mosaic.select(veg_index).clip(outer_ee_geometry), vis_params)
                    m.add_child(colormap)
                add_geometry_to_maps([m], geometry_gdf, buffer_geometry_gdf)
                m.to_streamlit()

    st.write("<h3><div style='text-align: center;'>Esri RGB Imagery</div></h3>", unsafe_allow_html=True)
    cols = st.columns(2)
    for col, daterange_str in zip(cols, [year_1, year_2]):
        start_date, end_date = daterange_str_to_dates(daterange_str)
        mid_date = start_date + (end_date - start_date) / 2
        esri_date = min(wayback_df.index, key=lambda x: abs(x - mid_date))
        esri_url = (
            wayback_df.loc[esri_date, "ResourceURL_Template"]
            .replace("{TileMatrixSet}", "GoogleMapsCompatible")
            .replace("{TileMatrix}", "{z}")
            .replace("{TileRow}", "{y}")
            .replace("{TileCol}", "{x}")
        )
        esri_title = "Esri " + wayback_df.loc[esri_date, "Title"]
        with col:
            m = leaf_folium.Map()
            m.add_tile_layer(
                esri_url,
                name=esri_title,
                attribution="Esri",
            )
            add_geometry_to_maps([m], geometry_gdf, buffer_geometry_gdf)
            write_info(
                f"""
            <div style="text-align: center;">
                Esri Imagery - {esri_date.strftime('%Y-%m-%d')}
            </div>
            """
            )
            m.to_streamlit()

    for name, key in zip(
        ["RGB (Least Cloud Tile Crop)", "RGB (Max NDVI Mosaic)"],
        ["image_visual_least_cloud", "mosaic_visual_max_ndvi"],
    ):
        st.write(f"<h3><div style='text-align: center;'>{name}</div></h3>", unsafe_allow_html=True)
        cols = st.columns(2)
        for col, daterange_str in zip(cols, [year_1, year_2]):
            start_date, end_date = daterange_str_to_dates(daterange_str)
            mid_date = start_date + (end_date - start_date) / 2
            with col:
                m = gee_folium.Map()
                visual_mosaic = result_df.loc[daterange_str, key]
                # visual_layer = gee_folium.ee_tile_layer(mosaic, {"bands": ["R", "G", "B"], "min": min_all, "max": max_all})

                m.add_layer(visual_mosaic.select(["R", "G", "B"]))
                add_geometry_to_maps([m], geometry_gdf, buffer_geometry_gdf)
                m.to_streamlit()


show_credits()