Spaces:
Running
on
Zero
Running
on
Zero
# Adapted from https://github.com/junjun3518/alias-free-torch under the Apache License 2.0 | |
# LICENSE is in incl_licenses directory. | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
import math | |
if "sinc" in dir(torch): | |
sinc = torch.sinc | |
else: | |
# This code is adopted from adefossez's julius.core.sinc under the MIT License | |
# https://adefossez.github.io/julius/julius/core.html | |
# LICENSE is in incl_licenses directory. | |
def sinc(x: torch.Tensor): | |
""" | |
Implementation of sinc, i.e. sin(pi * x) / (pi * x) | |
__Warning__: Different to julius.sinc, the input is multiplied by `pi`! | |
""" | |
return torch.where( | |
x == 0, | |
torch.tensor(1.0, device=x.device, dtype=x.dtype), | |
torch.sin(math.pi * x) / math.pi / x, | |
) | |
# This code is adopted from adefossez's julius.lowpass.LowPassFilters under the MIT License | |
# https://adefossez.github.io/julius/julius/lowpass.html | |
# LICENSE is in incl_licenses directory. | |
def kaiser_sinc_filter1d( | |
cutoff, half_width, kernel_size | |
): # return filter [1,1,kernel_size] | |
even = kernel_size % 2 == 0 | |
half_size = kernel_size // 2 | |
# For kaiser window | |
delta_f = 4 * half_width | |
A = 2.285 * (half_size - 1) * math.pi * delta_f + 7.95 | |
if A > 50.0: | |
beta = 0.1102 * (A - 8.7) | |
elif A >= 21.0: | |
beta = 0.5842 * (A - 21) ** 0.4 + 0.07886 * (A - 21.0) | |
else: | |
beta = 0.0 | |
window = torch.kaiser_window(kernel_size, beta=beta, periodic=False) | |
# ratio = 0.5/cutoff -> 2 * cutoff = 1 / ratio | |
if even: | |
time = torch.arange(-half_size, half_size) + 0.5 | |
else: | |
time = torch.arange(kernel_size) - half_size | |
if cutoff == 0: | |
filter_ = torch.zeros_like(time) | |
else: | |
filter_ = 2 * cutoff * window * sinc(2 * cutoff * time) | |
""" | |
Normalize filter to have sum = 1, otherwise we will have a small leakage of the constant component in the input signal. | |
""" | |
filter_ /= filter_.sum() | |
filter = filter_.view(1, 1, kernel_size) | |
return filter | |
class LowPassFilter1d(nn.Module): | |
def __init__( | |
self, | |
cutoff=0.5, | |
half_width=0.6, | |
stride: int = 1, | |
padding: bool = True, | |
padding_mode: str = "replicate", | |
kernel_size: int = 12, | |
): | |
""" | |
kernel_size should be even number for stylegan3 setup, in this implementation, odd number is also possible. | |
""" | |
super().__init__() | |
if cutoff < -0.0: | |
raise ValueError("Minimum cutoff must be larger than zero.") | |
if cutoff > 0.5: | |
raise ValueError("A cutoff above 0.5 does not make sense.") | |
self.kernel_size = kernel_size | |
self.even = kernel_size % 2 == 0 | |
self.pad_left = kernel_size // 2 - int(self.even) | |
self.pad_right = kernel_size // 2 | |
self.stride = stride | |
self.padding = padding | |
self.padding_mode = padding_mode | |
filter = kaiser_sinc_filter1d(cutoff, half_width, kernel_size) | |
self.register_buffer("filter", filter) | |
# Input [B, C, T] | |
def forward(self, x): | |
_, C, _ = x.shape | |
if self.padding: | |
x = F.pad(x, (self.pad_left, self.pad_right), mode=self.padding_mode) | |
out = F.conv1d(x, self.filter.expand(C, -1, -1), stride=self.stride, groups=C) | |
return out | |