# Adapted from https://github.com/junjun3518/alias-free-torch under the Apache License 2.0 # LICENSE is in incl_licenses directory. import torch import torch.nn as nn import torch.nn.functional as F import math if "sinc" in dir(torch): sinc = torch.sinc else: # This code is adopted from adefossez's julius.core.sinc under the MIT License # https://adefossez.github.io/julius/julius/core.html # LICENSE is in incl_licenses directory. def sinc(x: torch.Tensor): """ Implementation of sinc, i.e. sin(pi * x) / (pi * x) __Warning__: Different to julius.sinc, the input is multiplied by `pi`! """ return torch.where( x == 0, torch.tensor(1.0, device=x.device, dtype=x.dtype), torch.sin(math.pi * x) / math.pi / x, ) # This code is adopted from adefossez's julius.lowpass.LowPassFilters under the MIT License # https://adefossez.github.io/julius/julius/lowpass.html # LICENSE is in incl_licenses directory. def kaiser_sinc_filter1d( cutoff, half_width, kernel_size ): # return filter [1,1,kernel_size] even = kernel_size % 2 == 0 half_size = kernel_size // 2 # For kaiser window delta_f = 4 * half_width A = 2.285 * (half_size - 1) * math.pi * delta_f + 7.95 if A > 50.0: beta = 0.1102 * (A - 8.7) elif A >= 21.0: beta = 0.5842 * (A - 21) ** 0.4 + 0.07886 * (A - 21.0) else: beta = 0.0 window = torch.kaiser_window(kernel_size, beta=beta, periodic=False) # ratio = 0.5/cutoff -> 2 * cutoff = 1 / ratio if even: time = torch.arange(-half_size, half_size) + 0.5 else: time = torch.arange(kernel_size) - half_size if cutoff == 0: filter_ = torch.zeros_like(time) else: filter_ = 2 * cutoff * window * sinc(2 * cutoff * time) """ Normalize filter to have sum = 1, otherwise we will have a small leakage of the constant component in the input signal. """ filter_ /= filter_.sum() filter = filter_.view(1, 1, kernel_size) return filter class LowPassFilter1d(nn.Module): def __init__( self, cutoff=0.5, half_width=0.6, stride: int = 1, padding: bool = True, padding_mode: str = "replicate", kernel_size: int = 12, ): """ kernel_size should be even number for stylegan3 setup, in this implementation, odd number is also possible. """ super().__init__() if cutoff < -0.0: raise ValueError("Minimum cutoff must be larger than zero.") if cutoff > 0.5: raise ValueError("A cutoff above 0.5 does not make sense.") self.kernel_size = kernel_size self.even = kernel_size % 2 == 0 self.pad_left = kernel_size // 2 - int(self.even) self.pad_right = kernel_size // 2 self.stride = stride self.padding = padding self.padding_mode = padding_mode filter = kaiser_sinc_filter1d(cutoff, half_width, kernel_size) self.register_buffer("filter", filter) # Input [B, C, T] def forward(self, x): _, C, _ = x.shape if self.padding: x = F.pad(x, (self.pad_left, self.pad_right), mode=self.padding_mode) out = F.conv1d(x, self.filter.expand(C, -1, -1), stride=self.stride, groups=C) return out