File size: 8,327 Bytes
508aa28
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b326959
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
from dac.nn.quantize import ResidualVectorQuantize
from torch import nn
from modules.wavenet import WN
import torch
import torchaudio
import torchaudio.functional as audio_F
import numpy as np
from .bigvgan import *
from torch.nn.utils import weight_norm
from torch import nn, sin, pow
from einops.layers.torch import Rearrange
from dac.model.encodec import SConv1d

def init_weights(m):
    if isinstance(m, nn.Conv1d):
        nn.init.trunc_normal_(m.weight, std=0.02)
        nn.init.constant_(m.bias, 0)


def WNConv1d(*args, **kwargs):
    return weight_norm(nn.Conv1d(*args, **kwargs))


def WNConvTranspose1d(*args, **kwargs):
    return weight_norm(nn.ConvTranspose1d(*args, **kwargs))

class SnakeBeta(nn.Module):
    """
    A modified Snake function which uses separate parameters for the magnitude of the periodic components
    Shape:
        - Input: (B, C, T)
        - Output: (B, C, T), same shape as the input
    Parameters:
        - alpha - trainable parameter that controls frequency
        - beta - trainable parameter that controls magnitude
    References:
        - This activation function is a modified version based on this paper by Liu Ziyin, Tilman Hartwig, Masahito Ueda:
        https://arxiv.org/abs/2006.08195
    Examples:
        >>> a1 = snakebeta(256)
        >>> x = torch.randn(256)
        >>> x = a1(x)
    """

    def __init__(
        self, in_features, alpha=1.0, alpha_trainable=True, alpha_logscale=False
    ):
        """
        Initialization.
        INPUT:
            - in_features: shape of the input
            - alpha - trainable parameter that controls frequency
            - beta - trainable parameter that controls magnitude
            alpha is initialized to 1 by default, higher values = higher-frequency.
            beta is initialized to 1 by default, higher values = higher-magnitude.
            alpha will be trained along with the rest of your model.
        """
        super(SnakeBeta, self).__init__()
        self.in_features = in_features

        # initialize alpha
        self.alpha_logscale = alpha_logscale
        if self.alpha_logscale:  # log scale alphas initialized to zeros
            self.alpha = nn.Parameter(torch.zeros(in_features) * alpha)
            self.beta = nn.Parameter(torch.zeros(in_features) * alpha)
        else:  # linear scale alphas initialized to ones
            self.alpha = nn.Parameter(torch.ones(in_features) * alpha)
            self.beta = nn.Parameter(torch.ones(in_features) * alpha)

        self.alpha.requires_grad = alpha_trainable
        self.beta.requires_grad = alpha_trainable

        self.no_div_by_zero = 0.000000001

    def forward(self, x):
        """
        Forward pass of the function.
        Applies the function to the input elementwise.
        SnakeBeta := x + 1/b * sin^2 (xa)
        """
        alpha = self.alpha.unsqueeze(0).unsqueeze(-1)  # line up with x to [B, C, T]
        beta = self.beta.unsqueeze(0).unsqueeze(-1)
        if self.alpha_logscale:
            alpha = torch.exp(alpha)
            beta = torch.exp(beta)
        x = x + (1.0 / (beta + self.no_div_by_zero)) * pow(sin(x * alpha), 2)

        return x

class ResidualUnit(nn.Module):
    def __init__(self, dim: int = 16, dilation: int = 1):
        super().__init__()
        pad = ((7 - 1) * dilation) // 2
        self.block = nn.Sequential(
            Activation1d(activation=SnakeBeta(dim, alpha_logscale=True)),
            WNConv1d(dim, dim, kernel_size=7, dilation=dilation, padding=pad),
            Activation1d(activation=SnakeBeta(dim, alpha_logscale=True)),
            WNConv1d(dim, dim, kernel_size=1),
        )

    def forward(self, x):
        return x + self.block(x)

class CNNLSTM(nn.Module):
    def __init__(self, indim, outdim, head, global_pred=False):
        super().__init__()
        self.global_pred = global_pred
        self.model = nn.Sequential(
            ResidualUnit(indim, dilation=1),
            ResidualUnit(indim, dilation=2),
            ResidualUnit(indim, dilation=3),
            Activation1d(activation=SnakeBeta(indim, alpha_logscale=True)),
            Rearrange("b c t -> b t c"),
        )
        self.heads = nn.ModuleList([nn.Linear(indim, outdim) for i in range(head)])

    def forward(self, x):
        # x: [B, C, T]
        x = self.model(x)
        if self.global_pred:
            x = torch.mean(x, dim=1, keepdim=False)
        outs = [head(x) for head in self.heads]
        return outs

def sequence_mask(length, max_length=None):
  if max_length is None:
    max_length = length.max()
  x = torch.arange(max_length, dtype=length.dtype, device=length.device)
  return x.unsqueeze(0) < length.unsqueeze(1)
class FAquantizer(nn.Module):
    def __init__(self, in_dim=1024,
                 n_p_codebooks=1,
                 n_c_codebooks=2,
                 n_t_codebooks=2,
                 n_r_codebooks=3,
                 codebook_size=1024,
                 codebook_dim=8,
                 quantizer_dropout=0.5,
                 causal=False,
                 separate_prosody_encoder=False,
                 timbre_norm=False,):
        super(FAquantizer, self).__init__()
        conv1d_type = SConv1d# if causal else nn.Conv1d
        self.prosody_quantizer = ResidualVectorQuantize(
            input_dim=in_dim,
            n_codebooks=n_p_codebooks,
            codebook_size=codebook_size,
            codebook_dim=codebook_dim,
            quantizer_dropout=quantizer_dropout,
        )

        self.content_quantizer = ResidualVectorQuantize(
            input_dim=in_dim,
            n_codebooks=n_c_codebooks,
            codebook_size=codebook_size,
            codebook_dim=codebook_dim,
            quantizer_dropout=quantizer_dropout,
        )

        self.residual_quantizer = ResidualVectorQuantize(
            input_dim=in_dim,
            n_codebooks=n_r_codebooks,
            codebook_size=codebook_size,
            codebook_dim=codebook_dim,
            quantizer_dropout=quantizer_dropout,
        )

        self.melspec_linear = conv1d_type(in_channels=20, out_channels=256, kernel_size=1, causal=causal)
        self.melspec_encoder = WN(hidden_channels=256, kernel_size=5, dilation_rate=1, n_layers=8, gin_channels=0, p_dropout=0.2, causal=causal)
        self.melspec_linear2 = conv1d_type(in_channels=256, out_channels=1024, kernel_size=1, causal=causal)

        self.prob_random_mask_residual = 0.75

        SPECT_PARAMS = {
            "n_fft": 2048,
            "win_length": 1200,
            "hop_length": 300,
        }
        MEL_PARAMS = {
            "n_mels": 80,
        }

        self.to_mel = torchaudio.transforms.MelSpectrogram(
            n_mels=MEL_PARAMS["n_mels"], sample_rate=24000, **SPECT_PARAMS
        )
        self.mel_mean, self.mel_std = -4, 4
        self.frame_rate = 24000 / 300
        self.hop_length = 300

    def preprocess(self, wave_tensor, n_bins=20):
        mel_tensor = self.to_mel(wave_tensor.squeeze(1))
        mel_tensor = (torch.log(1e-5 + mel_tensor) - self.mel_mean) / self.mel_std
        return mel_tensor[:, :n_bins, :int(wave_tensor.size(-1) / self.hop_length)]

    def forward(self, x, wave_segments):
        outs = 0
        prosody_feature = self.preprocess(wave_segments)

        f0_input = prosody_feature  # (B, T, 20)
        f0_input = self.melspec_linear(f0_input)
        f0_input = self.melspec_encoder(f0_input, torch.ones(f0_input.shape[0], 1, f0_input.shape[2]).to(
            f0_input.device).bool())
        f0_input = self.melspec_linear2(f0_input)

        common_min_size = min(f0_input.size(2), x.size(2))
        f0_input = f0_input[:, :, :common_min_size]

        x = x[:, :, :common_min_size]

        z_p, codes_p, latents_p, commitment_loss_p, codebook_loss_p = self.prosody_quantizer(
            f0_input, 1
        )
        outs += z_p.detach()

        z_c, codes_c, latents_c, commitment_loss_c, codebook_loss_c = self.content_quantizer(
            x, 2
        )
        outs += z_c.detach()

        residual_feature = x - z_p.detach() - z_c.detach()

        z_r, codes_r, latents_r, commitment_loss_r, codebook_loss_r = self.residual_quantizer(
            residual_feature, 3
        )

        quantized = [z_p, z_c, z_r]
        codes = [codes_p, codes_c, codes_r]

        return quantized, codes