Staticaliza commited on
Commit
508aa28
·
verified ·
1 Parent(s): 39316f6

Update modules/quantize.py

Browse files
Files changed (1) hide show
  1. modules/quantize.py +228 -228
modules/quantize.py CHANGED
@@ -1,229 +1,229 @@
1
- from dac.nn.quantize import ResidualVectorQuantize
2
- from torch import nn
3
- from modules.wavenet import WN
4
- import torch
5
- import torchaudio
6
- import torchaudio.functional as audio_F
7
- import numpy as np
8
- from .alias_free_torch import *
9
- from torch.nn.utils import weight_norm
10
- from torch import nn, sin, pow
11
- from einops.layers.torch import Rearrange
12
- from dac.model.encodec import SConv1d
13
-
14
- def init_weights(m):
15
- if isinstance(m, nn.Conv1d):
16
- nn.init.trunc_normal_(m.weight, std=0.02)
17
- nn.init.constant_(m.bias, 0)
18
-
19
-
20
- def WNConv1d(*args, **kwargs):
21
- return weight_norm(nn.Conv1d(*args, **kwargs))
22
-
23
-
24
- def WNConvTranspose1d(*args, **kwargs):
25
- return weight_norm(nn.ConvTranspose1d(*args, **kwargs))
26
-
27
- class SnakeBeta(nn.Module):
28
- """
29
- A modified Snake function which uses separate parameters for the magnitude of the periodic components
30
- Shape:
31
- - Input: (B, C, T)
32
- - Output: (B, C, T), same shape as the input
33
- Parameters:
34
- - alpha - trainable parameter that controls frequency
35
- - beta - trainable parameter that controls magnitude
36
- References:
37
- - This activation function is a modified version based on this paper by Liu Ziyin, Tilman Hartwig, Masahito Ueda:
38
- https://arxiv.org/abs/2006.08195
39
- Examples:
40
- >>> a1 = snakebeta(256)
41
- >>> x = torch.randn(256)
42
- >>> x = a1(x)
43
- """
44
-
45
- def __init__(
46
- self, in_features, alpha=1.0, alpha_trainable=True, alpha_logscale=False
47
- ):
48
- """
49
- Initialization.
50
- INPUT:
51
- - in_features: shape of the input
52
- - alpha - trainable parameter that controls frequency
53
- - beta - trainable parameter that controls magnitude
54
- alpha is initialized to 1 by default, higher values = higher-frequency.
55
- beta is initialized to 1 by default, higher values = higher-magnitude.
56
- alpha will be trained along with the rest of your model.
57
- """
58
- super(SnakeBeta, self).__init__()
59
- self.in_features = in_features
60
-
61
- # initialize alpha
62
- self.alpha_logscale = alpha_logscale
63
- if self.alpha_logscale: # log scale alphas initialized to zeros
64
- self.alpha = nn.Parameter(torch.zeros(in_features) * alpha)
65
- self.beta = nn.Parameter(torch.zeros(in_features) * alpha)
66
- else: # linear scale alphas initialized to ones
67
- self.alpha = nn.Parameter(torch.ones(in_features) * alpha)
68
- self.beta = nn.Parameter(torch.ones(in_features) * alpha)
69
-
70
- self.alpha.requires_grad = alpha_trainable
71
- self.beta.requires_grad = alpha_trainable
72
-
73
- self.no_div_by_zero = 0.000000001
74
-
75
- def forward(self, x):
76
- """
77
- Forward pass of the function.
78
- Applies the function to the input elementwise.
79
- SnakeBeta := x + 1/b * sin^2 (xa)
80
- """
81
- alpha = self.alpha.unsqueeze(0).unsqueeze(-1) # line up with x to [B, C, T]
82
- beta = self.beta.unsqueeze(0).unsqueeze(-1)
83
- if self.alpha_logscale:
84
- alpha = torch.exp(alpha)
85
- beta = torch.exp(beta)
86
- x = x + (1.0 / (beta + self.no_div_by_zero)) * pow(sin(x * alpha), 2)
87
-
88
- return x
89
-
90
- class ResidualUnit(nn.Module):
91
- def __init__(self, dim: int = 16, dilation: int = 1):
92
- super().__init__()
93
- pad = ((7 - 1) * dilation) // 2
94
- self.block = nn.Sequential(
95
- Activation1d(activation=SnakeBeta(dim, alpha_logscale=True)),
96
- WNConv1d(dim, dim, kernel_size=7, dilation=dilation, padding=pad),
97
- Activation1d(activation=SnakeBeta(dim, alpha_logscale=True)),
98
- WNConv1d(dim, dim, kernel_size=1),
99
- )
100
-
101
- def forward(self, x):
102
- return x + self.block(x)
103
-
104
- class CNNLSTM(nn.Module):
105
- def __init__(self, indim, outdim, head, global_pred=False):
106
- super().__init__()
107
- self.global_pred = global_pred
108
- self.model = nn.Sequential(
109
- ResidualUnit(indim, dilation=1),
110
- ResidualUnit(indim, dilation=2),
111
- ResidualUnit(indim, dilation=3),
112
- Activation1d(activation=SnakeBeta(indim, alpha_logscale=True)),
113
- Rearrange("b c t -> b t c"),
114
- )
115
- self.heads = nn.ModuleList([nn.Linear(indim, outdim) for i in range(head)])
116
-
117
- def forward(self, x):
118
- # x: [B, C, T]
119
- x = self.model(x)
120
- if self.global_pred:
121
- x = torch.mean(x, dim=1, keepdim=False)
122
- outs = [head(x) for head in self.heads]
123
- return outs
124
-
125
- def sequence_mask(length, max_length=None):
126
- if max_length is None:
127
- max_length = length.max()
128
- x = torch.arange(max_length, dtype=length.dtype, device=length.device)
129
- return x.unsqueeze(0) < length.unsqueeze(1)
130
- class FAquantizer(nn.Module):
131
- def __init__(self, in_dim=1024,
132
- n_p_codebooks=1,
133
- n_c_codebooks=2,
134
- n_t_codebooks=2,
135
- n_r_codebooks=3,
136
- codebook_size=1024,
137
- codebook_dim=8,
138
- quantizer_dropout=0.5,
139
- causal=False,
140
- separate_prosody_encoder=False,
141
- timbre_norm=False,):
142
- super(FAquantizer, self).__init__()
143
- conv1d_type = SConv1d# if causal else nn.Conv1d
144
- self.prosody_quantizer = ResidualVectorQuantize(
145
- input_dim=in_dim,
146
- n_codebooks=n_p_codebooks,
147
- codebook_size=codebook_size,
148
- codebook_dim=codebook_dim,
149
- quantizer_dropout=quantizer_dropout,
150
- )
151
-
152
- self.content_quantizer = ResidualVectorQuantize(
153
- input_dim=in_dim,
154
- n_codebooks=n_c_codebooks,
155
- codebook_size=codebook_size,
156
- codebook_dim=codebook_dim,
157
- quantizer_dropout=quantizer_dropout,
158
- )
159
-
160
- self.residual_quantizer = ResidualVectorQuantize(
161
- input_dim=in_dim,
162
- n_codebooks=n_r_codebooks,
163
- codebook_size=codebook_size,
164
- codebook_dim=codebook_dim,
165
- quantizer_dropout=quantizer_dropout,
166
- )
167
-
168
- self.melspec_linear = conv1d_type(in_channels=20, out_channels=256, kernel_size=1, causal=causal)
169
- self.melspec_encoder = WN(hidden_channels=256, kernel_size=5, dilation_rate=1, n_layers=8, gin_channels=0, p_dropout=0.2, causal=causal)
170
- self.melspec_linear2 = conv1d_type(in_channels=256, out_channels=1024, kernel_size=1, causal=causal)
171
-
172
- self.prob_random_mask_residual = 0.75
173
-
174
- SPECT_PARAMS = {
175
- "n_fft": 2048,
176
- "win_length": 1200,
177
- "hop_length": 300,
178
- }
179
- MEL_PARAMS = {
180
- "n_mels": 80,
181
- }
182
-
183
- self.to_mel = torchaudio.transforms.MelSpectrogram(
184
- n_mels=MEL_PARAMS["n_mels"], sample_rate=24000, **SPECT_PARAMS
185
- )
186
- self.mel_mean, self.mel_std = -4, 4
187
- self.frame_rate = 24000 / 300
188
- self.hop_length = 300
189
-
190
- def preprocess(self, wave_tensor, n_bins=20):
191
- mel_tensor = self.to_mel(wave_tensor.squeeze(1))
192
- mel_tensor = (torch.log(1e-5 + mel_tensor) - self.mel_mean) / self.mel_std
193
- return mel_tensor[:, :n_bins, :int(wave_tensor.size(-1) / self.hop_length)]
194
-
195
- def forward(self, x, wave_segments):
196
- outs = 0
197
- prosody_feature = self.preprocess(wave_segments)
198
-
199
- f0_input = prosody_feature # (B, T, 20)
200
- f0_input = self.melspec_linear(f0_input)
201
- f0_input = self.melspec_encoder(f0_input, torch.ones(f0_input.shape[0], 1, f0_input.shape[2]).to(
202
- f0_input.device).bool())
203
- f0_input = self.melspec_linear2(f0_input)
204
-
205
- common_min_size = min(f0_input.size(2), x.size(2))
206
- f0_input = f0_input[:, :, :common_min_size]
207
-
208
- x = x[:, :, :common_min_size]
209
-
210
- z_p, codes_p, latents_p, commitment_loss_p, codebook_loss_p = self.prosody_quantizer(
211
- f0_input, 1
212
- )
213
- outs += z_p.detach()
214
-
215
- z_c, codes_c, latents_c, commitment_loss_c, codebook_loss_c = self.content_quantizer(
216
- x, 2
217
- )
218
- outs += z_c.detach()
219
-
220
- residual_feature = x - z_p.detach() - z_c.detach()
221
-
222
- z_r, codes_r, latents_r, commitment_loss_r, codebook_loss_r = self.residual_quantizer(
223
- residual_feature, 3
224
- )
225
-
226
- quantized = [z_p, z_c, z_r]
227
- codes = [codes_p, codes_c, codes_r]
228
-
229
  return quantized, codes
 
1
+ from dac.nn.quantize import ResidualVectorQuantize
2
+ from torch import nn
3
+ from modules.wavenet import WN
4
+ import torch
5
+ import torchaudio
6
+ import torchaudio.functional as audio_F
7
+ import numpy as np
8
+ from .bigvgan import *
9
+ from torch.nn.utils import weight_norm
10
+ from torch import nn, sin, pow
11
+ from einops.layers.torch import Rearrange
12
+ from dac.model.encodec import SConv1d
13
+
14
+ def init_weights(m):
15
+ if isinstance(m, nn.Conv1d):
16
+ nn.init.trunc_normal_(m.weight, std=0.02)
17
+ nn.init.constant_(m.bias, 0)
18
+
19
+
20
+ def WNConv1d(*args, **kwargs):
21
+ return weight_norm(nn.Conv1d(*args, **kwargs))
22
+
23
+
24
+ def WNConvTranspose1d(*args, **kwargs):
25
+ return weight_norm(nn.ConvTranspose1d(*args, **kwargs))
26
+
27
+ class SnakeBeta(nn.Module):
28
+ """
29
+ A modified Snake function which uses separate parameters for the magnitude of the periodic components
30
+ Shape:
31
+ - Input: (B, C, T)
32
+ - Output: (B, C, T), same shape as the input
33
+ Parameters:
34
+ - alpha - trainable parameter that controls frequency
35
+ - beta - trainable parameter that controls magnitude
36
+ References:
37
+ - This activation function is a modified version based on this paper by Liu Ziyin, Tilman Hartwig, Masahito Ueda:
38
+ https://arxiv.org/abs/2006.08195
39
+ Examples:
40
+ >>> a1 = snakebeta(256)
41
+ >>> x = torch.randn(256)
42
+ >>> x = a1(x)
43
+ """
44
+
45
+ def __init__(
46
+ self, in_features, alpha=1.0, alpha_trainable=True, alpha_logscale=False
47
+ ):
48
+ """
49
+ Initialization.
50
+ INPUT:
51
+ - in_features: shape of the input
52
+ - alpha - trainable parameter that controls frequency
53
+ - beta - trainable parameter that controls magnitude
54
+ alpha is initialized to 1 by default, higher values = higher-frequency.
55
+ beta is initialized to 1 by default, higher values = higher-magnitude.
56
+ alpha will be trained along with the rest of your model.
57
+ """
58
+ super(SnakeBeta, self).__init__()
59
+ self.in_features = in_features
60
+
61
+ # initialize alpha
62
+ self.alpha_logscale = alpha_logscale
63
+ if self.alpha_logscale: # log scale alphas initialized to zeros
64
+ self.alpha = nn.Parameter(torch.zeros(in_features) * alpha)
65
+ self.beta = nn.Parameter(torch.zeros(in_features) * alpha)
66
+ else: # linear scale alphas initialized to ones
67
+ self.alpha = nn.Parameter(torch.ones(in_features) * alpha)
68
+ self.beta = nn.Parameter(torch.ones(in_features) * alpha)
69
+
70
+ self.alpha.requires_grad = alpha_trainable
71
+ self.beta.requires_grad = alpha_trainable
72
+
73
+ self.no_div_by_zero = 0.000000001
74
+
75
+ def forward(self, x):
76
+ """
77
+ Forward pass of the function.
78
+ Applies the function to the input elementwise.
79
+ SnakeBeta := x + 1/b * sin^2 (xa)
80
+ """
81
+ alpha = self.alpha.unsqueeze(0).unsqueeze(-1) # line up with x to [B, C, T]
82
+ beta = self.beta.unsqueeze(0).unsqueeze(-1)
83
+ if self.alpha_logscale:
84
+ alpha = torch.exp(alpha)
85
+ beta = torch.exp(beta)
86
+ x = x + (1.0 / (beta + self.no_div_by_zero)) * pow(sin(x * alpha), 2)
87
+
88
+ return x
89
+
90
+ class ResidualUnit(nn.Module):
91
+ def __init__(self, dim: int = 16, dilation: int = 1):
92
+ super().__init__()
93
+ pad = ((7 - 1) * dilation) // 2
94
+ self.block = nn.Sequential(
95
+ Activation1d(activation=SnakeBeta(dim, alpha_logscale=True)),
96
+ WNConv1d(dim, dim, kernel_size=7, dilation=dilation, padding=pad),
97
+ Activation1d(activation=SnakeBeta(dim, alpha_logscale=True)),
98
+ WNConv1d(dim, dim, kernel_size=1),
99
+ )
100
+
101
+ def forward(self, x):
102
+ return x + self.block(x)
103
+
104
+ class CNNLSTM(nn.Module):
105
+ def __init__(self, indim, outdim, head, global_pred=False):
106
+ super().__init__()
107
+ self.global_pred = global_pred
108
+ self.model = nn.Sequential(
109
+ ResidualUnit(indim, dilation=1),
110
+ ResidualUnit(indim, dilation=2),
111
+ ResidualUnit(indim, dilation=3),
112
+ Activation1d(activation=SnakeBeta(indim, alpha_logscale=True)),
113
+ Rearrange("b c t -> b t c"),
114
+ )
115
+ self.heads = nn.ModuleList([nn.Linear(indim, outdim) for i in range(head)])
116
+
117
+ def forward(self, x):
118
+ # x: [B, C, T]
119
+ x = self.model(x)
120
+ if self.global_pred:
121
+ x = torch.mean(x, dim=1, keepdim=False)
122
+ outs = [head(x) for head in self.heads]
123
+ return outs
124
+
125
+ def sequence_mask(length, max_length=None):
126
+ if max_length is None:
127
+ max_length = length.max()
128
+ x = torch.arange(max_length, dtype=length.dtype, device=length.device)
129
+ return x.unsqueeze(0) < length.unsqueeze(1)
130
+ class FAquantizer(nn.Module):
131
+ def __init__(self, in_dim=1024,
132
+ n_p_codebooks=1,
133
+ n_c_codebooks=2,
134
+ n_t_codebooks=2,
135
+ n_r_codebooks=3,
136
+ codebook_size=1024,
137
+ codebook_dim=8,
138
+ quantizer_dropout=0.5,
139
+ causal=False,
140
+ separate_prosody_encoder=False,
141
+ timbre_norm=False,):
142
+ super(FAquantizer, self).__init__()
143
+ conv1d_type = SConv1d# if causal else nn.Conv1d
144
+ self.prosody_quantizer = ResidualVectorQuantize(
145
+ input_dim=in_dim,
146
+ n_codebooks=n_p_codebooks,
147
+ codebook_size=codebook_size,
148
+ codebook_dim=codebook_dim,
149
+ quantizer_dropout=quantizer_dropout,
150
+ )
151
+
152
+ self.content_quantizer = ResidualVectorQuantize(
153
+ input_dim=in_dim,
154
+ n_codebooks=n_c_codebooks,
155
+ codebook_size=codebook_size,
156
+ codebook_dim=codebook_dim,
157
+ quantizer_dropout=quantizer_dropout,
158
+ )
159
+
160
+ self.residual_quantizer = ResidualVectorQuantize(
161
+ input_dim=in_dim,
162
+ n_codebooks=n_r_codebooks,
163
+ codebook_size=codebook_size,
164
+ codebook_dim=codebook_dim,
165
+ quantizer_dropout=quantizer_dropout,
166
+ )
167
+
168
+ self.melspec_linear = conv1d_type(in_channels=20, out_channels=256, kernel_size=1, causal=causal)
169
+ self.melspec_encoder = WN(hidden_channels=256, kernel_size=5, dilation_rate=1, n_layers=8, gin_channels=0, p_dropout=0.2, causal=causal)
170
+ self.melspec_linear2 = conv1d_type(in_channels=256, out_channels=1024, kernel_size=1, causal=causal)
171
+
172
+ self.prob_random_mask_residual = 0.75
173
+
174
+ SPECT_PARAMS = {
175
+ "n_fft": 2048,
176
+ "win_length": 1200,
177
+ "hop_length": 300,
178
+ }
179
+ MEL_PARAMS = {
180
+ "n_mels": 80,
181
+ }
182
+
183
+ self.to_mel = torchaudio.transforms.MelSpectrogram(
184
+ n_mels=MEL_PARAMS["n_mels"], sample_rate=24000, **SPECT_PARAMS
185
+ )
186
+ self.mel_mean, self.mel_std = -4, 4
187
+ self.frame_rate = 24000 / 300
188
+ self.hop_length = 300
189
+
190
+ def preprocess(self, wave_tensor, n_bins=20):
191
+ mel_tensor = self.to_mel(wave_tensor.squeeze(1))
192
+ mel_tensor = (torch.log(1e-5 + mel_tensor) - self.mel_mean) / self.mel_std
193
+ return mel_tensor[:, :n_bins, :int(wave_tensor.size(-1) / self.hop_length)]
194
+
195
+ def forward(self, x, wave_segments):
196
+ outs = 0
197
+ prosody_feature = self.preprocess(wave_segments)
198
+
199
+ f0_input = prosody_feature # (B, T, 20)
200
+ f0_input = self.melspec_linear(f0_input)
201
+ f0_input = self.melspec_encoder(f0_input, torch.ones(f0_input.shape[0], 1, f0_input.shape[2]).to(
202
+ f0_input.device).bool())
203
+ f0_input = self.melspec_linear2(f0_input)
204
+
205
+ common_min_size = min(f0_input.size(2), x.size(2))
206
+ f0_input = f0_input[:, :, :common_min_size]
207
+
208
+ x = x[:, :, :common_min_size]
209
+
210
+ z_p, codes_p, latents_p, commitment_loss_p, codebook_loss_p = self.prosody_quantizer(
211
+ f0_input, 1
212
+ )
213
+ outs += z_p.detach()
214
+
215
+ z_c, codes_c, latents_c, commitment_loss_c, codebook_loss_c = self.content_quantizer(
216
+ x, 2
217
+ )
218
+ outs += z_c.detach()
219
+
220
+ residual_feature = x - z_p.detach() - z_c.detach()
221
+
222
+ z_r, codes_r, latents_r, commitment_loss_r, codebook_loss_r = self.residual_quantizer(
223
+ residual_feature, 3
224
+ )
225
+
226
+ quantized = [z_p, z_c, z_r]
227
+ codes = [codes_p, codes_c, codes_r]
228
+
229
  return quantized, codes