Spaces:
Sleeping
Sleeping
pip install gradio==3.14.0 | |
import gradio as gr | |
import numpy as np | |
import tensorflow as tf | |
import matplotlib.pyplot as plt | |
from PIL import Image | |
import pickle | |
from tensorflow.keras.models import load_model | |
# Load the RGB to hyperspectral conversion model | |
converion_model = load_model('/kaggle/input/convmo/Conversion_model.h5') | |
# Load the cancer classification model | |
#cancer_model = pickle.load(open("/kaggle/input/classi/ClassRF (1).pkl", "rb")) | |
cancer_model = pickle.load(open("/kaggle/input/logistic/LRclass.pkl", "rb")) | |
def classify(rgb_image): | |
img = Image.fromarray(rgb_image.astype('uint8'), 'RGB') | |
img = img.resize((272, 512)) | |
arr = np.array(img).astype('float32') / 255.0 | |
new_size = (272, 512) | |
resized_rgb_img = tf.image.resize(arr, new_size) | |
resized_rgb_img = tf.reshape(resized_rgb_img, (272, 512, 3)) | |
resized_rgb_img = np.expand_dims(resized_rgb_img , axis=0) | |
# Convert the RGB image to hyperspectral using your model | |
hyperspectral_image = converion_model(resized_rgb_img) | |
hyperspectral_image = tf.image.resize(hyperspectral_image, new_size) | |
hyperspectral_image = tf.reshape(hyperspectral_image, (272, 512, 16)) | |
imgplot = hyperspectral_image.numpy().astype(np.float32) | |
imgplot= imgplot.reshape(-1, 272*512*16) | |
prediction = cancer_model.predict(imgplot) | |
if np.argmax(prediction) == 0: | |
x= "cancer" | |
else: | |
x="not a cancer" | |
return x | |
# Define the Gradio interface | |
#image_input = gr.inputs.Image() | |
output_label = gr.components.Label() | |
#output_label=["text"] | |
image_input = gr.components.Image() | |
gr.Interface( | |
classify, | |
image_input, | |
output_label, | |
title="RGB to Hyperspectral Conversion and Cancer Classification", | |
description="Upload an RGB image and get a prediction of whether you have skin cancer or not." | |
).launch(share=True) | |