Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -0,0 +1,53 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
pip install gradio==3.14.0
|
2 |
+
import gradio as gr
|
3 |
+
import numpy as np
|
4 |
+
import tensorflow as tf
|
5 |
+
import matplotlib.pyplot as plt
|
6 |
+
from PIL import Image
|
7 |
+
import pickle
|
8 |
+
from tensorflow.keras.models import load_model
|
9 |
+
|
10 |
+
# Load the RGB to hyperspectral conversion model
|
11 |
+
converion_model = load_model('/kaggle/input/convmo/Conversion_model.h5')
|
12 |
+
|
13 |
+
# Load the cancer classification model
|
14 |
+
#cancer_model = pickle.load(open("/kaggle/input/classi/ClassRF (1).pkl", "rb"))
|
15 |
+
|
16 |
+
cancer_model = pickle.load(open("/kaggle/input/logistic/LRclass.pkl", "rb"))
|
17 |
+
|
18 |
+
def classify(rgb_image):
|
19 |
+
img = Image.fromarray(rgb_image.astype('uint8'), 'RGB')
|
20 |
+
img = img.resize((272, 512))
|
21 |
+
arr = np.array(img).astype('float32') / 255.0
|
22 |
+
new_size = (272, 512)
|
23 |
+
resized_rgb_img = tf.image.resize(arr, new_size)
|
24 |
+
resized_rgb_img = tf.reshape(resized_rgb_img, (272, 512, 3))
|
25 |
+
resized_rgb_img = np.expand_dims(resized_rgb_img , axis=0)
|
26 |
+
|
27 |
+
# Convert the RGB image to hyperspectral using your model
|
28 |
+
hyperspectral_image = converion_model(resized_rgb_img)
|
29 |
+
hyperspectral_image = tf.image.resize(hyperspectral_image, new_size)
|
30 |
+
hyperspectral_image = tf.reshape(hyperspectral_image, (272, 512, 16))
|
31 |
+
imgplot = hyperspectral_image.numpy().astype(np.float32)
|
32 |
+
imgplot= imgplot.reshape(-1, 272*512*16)
|
33 |
+
prediction = cancer_model.predict(imgplot)
|
34 |
+
if np.argmax(prediction) == 0:
|
35 |
+
x= "cancer"
|
36 |
+
else:
|
37 |
+
x="not a cancer"
|
38 |
+
return x
|
39 |
+
|
40 |
+
# Define the Gradio interface
|
41 |
+
#image_input = gr.inputs.Image()
|
42 |
+
output_label = gr.components.Label()
|
43 |
+
#output_label=["text"]
|
44 |
+
image_input = gr.components.Image()
|
45 |
+
gr.Interface(
|
46 |
+
classify,
|
47 |
+
image_input,
|
48 |
+
output_label,
|
49 |
+
title="RGB to Hyperspectral Conversion and Cancer Classification",
|
50 |
+
description="Upload an RGB image and get a prediction of whether you have skin cancer or not."
|
51 |
+
).launch(share=True)
|
52 |
+
|
53 |
+
|