|
import gc |
|
import os |
|
from pathlib import Path |
|
import traceback |
|
from typing import List, Literal, Optional, Union, Dict |
|
|
|
import numpy as np |
|
import torch |
|
from diffusers import AutoencoderTiny, StableDiffusionPipeline |
|
from PIL import Image |
|
from polygraphy import cuda |
|
|
|
from streamdiffusion import StreamDiffusion |
|
from streamdiffusion.image_utils import postprocess_image |
|
|
|
|
|
torch.set_grad_enabled(False) |
|
torch.backends.cuda.matmul.allow_tf32 = True |
|
torch.backends.cudnn.allow_tf32 = True |
|
|
|
|
|
class StreamDiffusionWrapper: |
|
def __init__( |
|
self, |
|
model_id_or_path: str, |
|
t_index_list: List[int], |
|
lora_dict: Optional[Dict[str, float]] = None, |
|
mode: Literal["img2img", "txt2img"] = "img2img", |
|
output_type: Literal["pil", "pt", "np", "latent"] = "pil", |
|
lcm_lora_id: Optional[str] = None, |
|
vae_id: Optional[str] = None, |
|
device: Literal["cpu", "cuda"] = "cuda", |
|
dtype: torch.dtype = torch.float16, |
|
frame_buffer_size: int = 1, |
|
width: int = 512, |
|
height: int = 512, |
|
warmup: int = 10, |
|
acceleration: Literal["none", "xformers", "tensorrt"] = "tensorrt", |
|
do_add_noise: bool = True, |
|
device_ids: Optional[List[int]] = None, |
|
use_lcm_lora: bool = True, |
|
use_tiny_vae: bool = True, |
|
enable_similar_image_filter: bool = False, |
|
similar_image_filter_threshold: float = 0.98, |
|
similar_image_filter_max_skip_frame: int = 10, |
|
use_denoising_batch: bool = True, |
|
cfg_type: Literal["none", "full", "self", "initialize"] = "self", |
|
seed: int = 2, |
|
use_safety_checker: bool = False, |
|
): |
|
""" |
|
Initializes the StreamDiffusionWrapper. |
|
|
|
Parameters |
|
---------- |
|
model_id_or_path : str |
|
The model id or path to load. |
|
t_index_list : List[int] |
|
The t_index_list to use for inference. |
|
lora_dict : Optional[Dict[str, float]], optional |
|
The lora_dict to load, by default None. |
|
Keys are the LoRA names and values are the LoRA scales. |
|
Example: {"LoRA_1" : 0.5 , "LoRA_2" : 0.7 ,...} |
|
mode : Literal["img2img", "txt2img"], optional |
|
txt2img or img2img, by default "img2img". |
|
output_type : Literal["pil", "pt", "np", "latent"], optional |
|
The output type of image, by default "pil". |
|
lcm_lora_id : Optional[str], optional |
|
The lcm_lora_id to load, by default None. |
|
If None, the default LCM-LoRA |
|
("latent-consistency/lcm-lora-sdv1-5") will be used. |
|
vae_id : Optional[str], optional |
|
The vae_id to load, by default None. |
|
If None, the default TinyVAE |
|
("madebyollin/taesd") will be used. |
|
device : Literal["cpu", "cuda"], optional |
|
The device to use for inference, by default "cuda". |
|
dtype : torch.dtype, optional |
|
The dtype for inference, by default torch.float16. |
|
frame_buffer_size : int, optional |
|
The frame buffer size for denoising batch, by default 1. |
|
width : int, optional |
|
The width of the image, by default 512. |
|
height : int, optional |
|
The height of the image, by default 512. |
|
warmup : int, optional |
|
The number of warmup steps to perform, by default 10. |
|
acceleration : Literal["none", "xformers", "tensorrt"], optional |
|
The acceleration method, by default "tensorrt". |
|
do_add_noise : bool, optional |
|
Whether to add noise for following denoising steps or not, |
|
by default True. |
|
device_ids : Optional[List[int]], optional |
|
The device ids to use for DataParallel, by default None. |
|
use_lcm_lora : bool, optional |
|
Whether to use LCM-LoRA or not, by default True. |
|
use_tiny_vae : bool, optional |
|
Whether to use TinyVAE or not, by default True. |
|
enable_similar_image_filter : bool, optional |
|
Whether to enable similar image filter or not, |
|
by default False. |
|
similar_image_filter_threshold : float, optional |
|
The threshold for similar image filter, by default 0.98. |
|
similar_image_filter_max_skip_frame : int, optional |
|
The max skip frame for similar image filter, by default 10. |
|
use_denoising_batch : bool, optional |
|
Whether to use denoising batch or not, by default True. |
|
cfg_type : Literal["none", "full", "self", "initialize"], |
|
optional |
|
The cfg_type for img2img mode, by default "self". |
|
You cannot use anything other than "none" for txt2img mode. |
|
seed : int, optional |
|
The seed, by default 2. |
|
use_safety_checker : bool, optional |
|
Whether to use safety checker or not, by default False. |
|
""" |
|
self.sd_turbo = "turbo" in model_id_or_path |
|
|
|
if mode == "txt2img": |
|
if cfg_type != "none": |
|
raise ValueError( |
|
f"txt2img mode accepts only cfg_type = 'none', but got {cfg_type}" |
|
) |
|
if use_denoising_batch and frame_buffer_size > 1: |
|
if not self.sd_turbo: |
|
raise ValueError( |
|
"txt2img mode cannot use denoising batch with frame_buffer_size > 1." |
|
) |
|
|
|
if mode == "img2img": |
|
if not use_denoising_batch: |
|
raise NotImplementedError( |
|
"img2img mode must use denoising batch for now." |
|
) |
|
|
|
self.device = device |
|
self.dtype = dtype |
|
self.width = width |
|
self.height = height |
|
self.mode = mode |
|
self.output_type = output_type |
|
self.frame_buffer_size = frame_buffer_size |
|
self.batch_size = ( |
|
len(t_index_list) * frame_buffer_size |
|
if use_denoising_batch |
|
else frame_buffer_size |
|
) |
|
|
|
self.use_denoising_batch = use_denoising_batch |
|
self.use_safety_checker = use_safety_checker |
|
|
|
self.stream: StreamDiffusion = self._load_model( |
|
model_id_or_path=model_id_or_path, |
|
lora_dict=lora_dict, |
|
lcm_lora_id=lcm_lora_id, |
|
vae_id=vae_id, |
|
t_index_list=t_index_list, |
|
acceleration=acceleration, |
|
warmup=warmup, |
|
do_add_noise=do_add_noise, |
|
use_lcm_lora=use_lcm_lora, |
|
use_tiny_vae=use_tiny_vae, |
|
cfg_type=cfg_type, |
|
seed=seed, |
|
) |
|
|
|
if device_ids is not None: |
|
self.stream.unet = torch.nn.DataParallel( |
|
self.stream.unet, device_ids=device_ids |
|
) |
|
|
|
if enable_similar_image_filter: |
|
self.stream.enable_similar_image_filter(similar_image_filter_threshold, similar_image_filter_max_skip_frame) |
|
|
|
def prepare( |
|
self, |
|
prompt: str, |
|
negative_prompt: str = "", |
|
num_inference_steps: int = 50, |
|
guidance_scale: float = 1.2, |
|
delta: float = 1.0, |
|
) -> None: |
|
""" |
|
Prepares the model for inference. |
|
|
|
Parameters |
|
---------- |
|
prompt : str |
|
The prompt to generate images from. |
|
num_inference_steps : int, optional |
|
The number of inference steps to perform, by default 50. |
|
guidance_scale : float, optional |
|
The guidance scale to use, by default 1.2. |
|
delta : float, optional |
|
The delta multiplier of virtual residual noise, |
|
by default 1.0. |
|
""" |
|
self.stream.prepare( |
|
prompt, |
|
negative_prompt, |
|
num_inference_steps=num_inference_steps, |
|
guidance_scale=guidance_scale, |
|
delta=delta, |
|
) |
|
|
|
def __call__( |
|
self, |
|
image: Optional[Union[str, Image.Image, torch.Tensor]] = None, |
|
prompt: Optional[str] = None, |
|
) -> Union[Image.Image, List[Image.Image]]: |
|
""" |
|
Performs img2img or txt2img based on the mode. |
|
|
|
Parameters |
|
---------- |
|
image : Optional[Union[str, Image.Image, torch.Tensor]] |
|
The image to generate from. |
|
prompt : Optional[str] |
|
The prompt to generate images from. |
|
|
|
Returns |
|
------- |
|
Union[Image.Image, List[Image.Image]] |
|
The generated image. |
|
""" |
|
if self.mode == "img2img": |
|
return self.img2img(image) |
|
else: |
|
return self.txt2img(prompt) |
|
|
|
def txt2img( |
|
self, prompt: Optional[str] = None |
|
) -> Union[Image.Image, List[Image.Image], torch.Tensor, np.ndarray]: |
|
""" |
|
Performs txt2img. |
|
|
|
Parameters |
|
---------- |
|
prompt : Optional[str] |
|
The prompt to generate images from. |
|
|
|
Returns |
|
------- |
|
Union[Image.Image, List[Image.Image]] |
|
The generated image. |
|
""" |
|
if prompt is not None: |
|
self.stream.update_prompt(prompt) |
|
|
|
if self.sd_turbo: |
|
image_tensor = self.stream.txt2img_sd_turbo(self.batch_size) |
|
else: |
|
image_tensor = self.stream.txt2img(self.frame_buffer_size) |
|
image = self.postprocess_image(image_tensor, output_type=self.output_type) |
|
|
|
if self.use_safety_checker: |
|
safety_checker_input = self.feature_extractor( |
|
image, return_tensors="pt" |
|
).to(self.device) |
|
_, has_nsfw_concept = self.safety_checker( |
|
images=image_tensor.to(self.dtype), |
|
clip_input=safety_checker_input.pixel_values.to(self.dtype), |
|
) |
|
image = self.nsfw_fallback_img if has_nsfw_concept[0] else image |
|
|
|
return image |
|
|
|
def img2img( |
|
self, image: Union[str, Image.Image, torch.Tensor] |
|
) -> Union[Image.Image, List[Image.Image], torch.Tensor, np.ndarray]: |
|
""" |
|
Performs img2img. |
|
|
|
Parameters |
|
---------- |
|
image : Union[str, Image.Image, torch.Tensor] |
|
The image to generate from. |
|
|
|
Returns |
|
------- |
|
Image.Image |
|
The generated image. |
|
""" |
|
if isinstance(image, str) or isinstance(image, Image.Image): |
|
image = self.preprocess_image(image) |
|
|
|
image_tensor = self.stream(image) |
|
image = self.postprocess_image(image_tensor, output_type=self.output_type) |
|
|
|
if self.use_safety_checker: |
|
safety_checker_input = self.feature_extractor( |
|
image, return_tensors="pt" |
|
).to(self.device) |
|
_, has_nsfw_concept = self.safety_checker( |
|
images=image_tensor.to(self.dtype), |
|
clip_input=safety_checker_input.pixel_values.to(self.dtype), |
|
) |
|
image = self.nsfw_fallback_img if has_nsfw_concept[0] else image |
|
|
|
return image |
|
|
|
def preprocess_image(self, image: Union[str, Image.Image]) -> torch.Tensor: |
|
""" |
|
Preprocesses the image. |
|
|
|
Parameters |
|
---------- |
|
image : Union[str, Image.Image, torch.Tensor] |
|
The image to preprocess. |
|
|
|
Returns |
|
------- |
|
torch.Tensor |
|
The preprocessed image. |
|
""" |
|
if isinstance(image, str): |
|
image = Image.open(image).convert("RGB").resize((self.width, self.height)) |
|
if isinstance(image, Image.Image): |
|
image = image.convert("RGB").resize((self.width, self.height)) |
|
|
|
return self.stream.image_processor.preprocess( |
|
image, self.height, self.width |
|
).to(device=self.device, dtype=self.dtype) |
|
|
|
def postprocess_image( |
|
self, image_tensor: torch.Tensor, output_type: str = "pil" |
|
) -> Union[Image.Image, List[Image.Image], torch.Tensor, np.ndarray]: |
|
""" |
|
Postprocesses the image. |
|
|
|
Parameters |
|
---------- |
|
image_tensor : torch.Tensor |
|
The image tensor to postprocess. |
|
|
|
Returns |
|
------- |
|
Union[Image.Image, List[Image.Image]] |
|
The postprocessed image. |
|
""" |
|
if self.frame_buffer_size > 1: |
|
return postprocess_image(image_tensor.cpu(), output_type=output_type) |
|
else: |
|
return postprocess_image(image_tensor.cpu(), output_type=output_type)[0] |
|
|
|
def _load_model( |
|
self, |
|
model_id_or_path: str, |
|
t_index_list: List[int], |
|
lora_dict: Optional[Dict[str, float]] = None, |
|
lcm_lora_id: Optional[str] = None, |
|
vae_id: Optional[str] = None, |
|
acceleration: Literal["none", "sfast", "tensorrt"] = "tensorrt", |
|
warmup: int = 10, |
|
do_add_noise: bool = True, |
|
use_lcm_lora: bool = True, |
|
use_tiny_vae: bool = True, |
|
cfg_type: Literal["none", "full", "self", "initialize"] = "self", |
|
seed: int = 2, |
|
) -> StreamDiffusion: |
|
""" |
|
Loads the model. |
|
|
|
This method does the following: |
|
|
|
1. Loads the model from the model_id_or_path. |
|
2. Loads and fuses the LCM-LoRA model from the lcm_lora_id if needed. |
|
3. Loads the VAE model from the vae_id if needed. |
|
4. Enables acceleration if needed. |
|
5. Prepares the model for inference. |
|
6. Load the safety checker if needed. |
|
|
|
Parameters |
|
---------- |
|
model_id_or_path : str |
|
The model id or path to load. |
|
t_index_list : List[int] |
|
The t_index_list to use for inference. |
|
lora_dict : Optional[Dict[str, float]], optional |
|
The lora_dict to load, by default None. |
|
Keys are the LoRA names and values are the LoRA scales. |
|
Example: {"LoRA_1" : 0.5 , "LoRA_2" : 0.7 ,...} |
|
lcm_lora_id : Optional[str], optional |
|
The lcm_lora_id to load, by default None. |
|
vae_id : Optional[str], optional |
|
The vae_id to load, by default None. |
|
acceleration : Literal["none", "xfomers", "sfast", "tensorrt"], optional |
|
The acceleration method, by default "tensorrt". |
|
warmup : int, optional |
|
The number of warmup steps to perform, by default 10. |
|
do_add_noise : bool, optional |
|
Whether to add noise for following denoising steps or not, |
|
by default True. |
|
use_lcm_lora : bool, optional |
|
Whether to use LCM-LoRA or not, by default True. |
|
use_tiny_vae : bool, optional |
|
Whether to use TinyVAE or not, by default True. |
|
cfg_type : Literal["none", "full", "self", "initialize"], |
|
optional |
|
The cfg_type for img2img mode, by default "self". |
|
You cannot use anything other than "none" for txt2img mode. |
|
seed : int, optional |
|
The seed, by default 2. |
|
|
|
Returns |
|
------- |
|
StreamDiffusion |
|
The loaded model. |
|
""" |
|
|
|
try: |
|
pipe: StableDiffusionPipeline = StableDiffusionPipeline.from_pretrained( |
|
model_id_or_path, |
|
).to(device=self.device, dtype=self.dtype) |
|
|
|
except ValueError: |
|
pipe: StableDiffusionPipeline = StableDiffusionPipeline.from_single_file( |
|
model_id_or_path, |
|
).to(device=self.device, dtype=self.dtype) |
|
except Exception: |
|
traceback.print_exc() |
|
print("Model load has failed. Doesn't exist.") |
|
exit() |
|
|
|
stream = StreamDiffusion( |
|
pipe=pipe, |
|
t_index_list=t_index_list, |
|
torch_dtype=self.dtype, |
|
width=self.width, |
|
height=self.height, |
|
do_add_noise=do_add_noise, |
|
frame_buffer_size=self.frame_buffer_size, |
|
use_denoising_batch=self.use_denoising_batch, |
|
cfg_type=cfg_type, |
|
) |
|
if not self.sd_turbo: |
|
if use_lcm_lora: |
|
if lcm_lora_id is not None: |
|
stream.load_lcm_lora( |
|
pretrained_model_name_or_path_or_dict=lcm_lora_id |
|
) |
|
else: |
|
stream.load_lcm_lora() |
|
stream.fuse_lora() |
|
|
|
if lora_dict is not None: |
|
for lora_name, lora_scale in lora_dict.items(): |
|
stream.load_lora(lora_name) |
|
stream.fuse_lora(lora_scale=lora_scale) |
|
print(f"Use LoRA: {lora_name} in weights {lora_scale}") |
|
|
|
if use_tiny_vae: |
|
if vae_id is not None: |
|
stream.vae = AutoencoderTiny.from_pretrained(vae_id).to( |
|
device=pipe.device, dtype=pipe.dtype |
|
) |
|
else: |
|
stream.vae = AutoencoderTiny.from_pretrained("madebyollin/taesd").to( |
|
device=pipe.device, dtype=pipe.dtype |
|
) |
|
|
|
try: |
|
if acceleration == "xformers": |
|
stream.pipe.enable_xformers_memory_efficient_attention() |
|
if acceleration == "tensorrt": |
|
from streamdiffusion.acceleration.tensorrt import ( |
|
TorchVAEEncoder, |
|
compile_unet, |
|
compile_vae_decoder, |
|
compile_vae_encoder, |
|
) |
|
from streamdiffusion.acceleration.tensorrt.engine import ( |
|
AutoencoderKLEngine, |
|
UNet2DConditionModelEngine, |
|
) |
|
from streamdiffusion.acceleration.tensorrt.models import ( |
|
VAE, |
|
UNet, |
|
VAEEncoder, |
|
) |
|
|
|
def create_prefix( |
|
model_id_or_path: str, |
|
max_batch_size: int, |
|
min_batch_size: int, |
|
): |
|
maybe_path = Path(model_id_or_path) |
|
if maybe_path.exists(): |
|
return f"{maybe_path.stem}--lcm_lora-{use_lcm_lora}--tiny_vae-{use_tiny_vae}--max_batch-{max_batch_size}--min_batch-{min_batch_size}--mode-{self.mode}" |
|
else: |
|
return f"{model_id_or_path}--lcm_lora-{use_lcm_lora}--tiny_vae-{use_tiny_vae}--max_batch-{max_batch_size}--min_batch-{min_batch_size}--mode-{self.mode}" |
|
|
|
engine_dir = os.path.join("engines") |
|
unet_path = os.path.join( |
|
engine_dir, |
|
create_prefix( |
|
model_id_or_path=model_id_or_path, |
|
max_batch_size=stream.trt_unet_batch_size, |
|
min_batch_size=stream.trt_unet_batch_size, |
|
), |
|
"unet.engine", |
|
) |
|
vae_encoder_path = os.path.join( |
|
engine_dir, |
|
create_prefix( |
|
model_id_or_path=model_id_or_path, |
|
max_batch_size=self.batch_size |
|
if self.mode == "txt2img" |
|
else stream.frame_bff_size, |
|
min_batch_size=self.batch_size |
|
if self.mode == "txt2img" |
|
else stream.frame_bff_size, |
|
), |
|
"vae_encoder.engine", |
|
) |
|
vae_decoder_path = os.path.join( |
|
engine_dir, |
|
create_prefix( |
|
model_id_or_path=model_id_or_path, |
|
max_batch_size=self.batch_size |
|
if self.mode == "txt2img" |
|
else stream.frame_bff_size, |
|
min_batch_size=self.batch_size |
|
if self.mode == "txt2img" |
|
else stream.frame_bff_size, |
|
), |
|
"vae_decoder.engine", |
|
) |
|
|
|
if not os.path.exists(unet_path): |
|
os.makedirs(os.path.dirname(unet_path), exist_ok=True) |
|
unet_model = UNet( |
|
fp16=True, |
|
device=stream.device, |
|
max_batch_size=stream.trt_unet_batch_size, |
|
min_batch_size=stream.trt_unet_batch_size, |
|
embedding_dim=stream.text_encoder.config.hidden_size, |
|
unet_dim=stream.unet.config.in_channels, |
|
) |
|
compile_unet( |
|
stream.unet, |
|
unet_model, |
|
unet_path + ".onnx", |
|
unet_path + ".opt.onnx", |
|
unet_path, |
|
opt_batch_size=stream.trt_unet_batch_size, |
|
) |
|
|
|
if not os.path.exists(vae_decoder_path): |
|
os.makedirs(os.path.dirname(vae_decoder_path), exist_ok=True) |
|
stream.vae.forward = stream.vae.decode |
|
vae_decoder_model = VAE( |
|
device=stream.device, |
|
max_batch_size=self.batch_size |
|
if self.mode == "txt2img" |
|
else stream.frame_bff_size, |
|
min_batch_size=self.batch_size |
|
if self.mode == "txt2img" |
|
else stream.frame_bff_size, |
|
) |
|
compile_vae_decoder( |
|
stream.vae, |
|
vae_decoder_model, |
|
vae_decoder_path + ".onnx", |
|
vae_decoder_path + ".opt.onnx", |
|
vae_decoder_path, |
|
opt_batch_size=self.batch_size |
|
if self.mode == "txt2img" |
|
else stream.frame_bff_size, |
|
) |
|
delattr(stream.vae, "forward") |
|
|
|
if not os.path.exists(vae_encoder_path): |
|
os.makedirs(os.path.dirname(vae_encoder_path), exist_ok=True) |
|
vae_encoder = TorchVAEEncoder(stream.vae).to(torch.device("cuda")) |
|
vae_encoder_model = VAEEncoder( |
|
device=stream.device, |
|
max_batch_size=self.batch_size |
|
if self.mode == "txt2img" |
|
else stream.frame_bff_size, |
|
min_batch_size=self.batch_size |
|
if self.mode == "txt2img" |
|
else stream.frame_bff_size, |
|
) |
|
compile_vae_encoder( |
|
vae_encoder, |
|
vae_encoder_model, |
|
vae_encoder_path + ".onnx", |
|
vae_encoder_path + ".opt.onnx", |
|
vae_encoder_path, |
|
opt_batch_size=self.batch_size |
|
if self.mode == "txt2img" |
|
else stream.frame_bff_size, |
|
) |
|
|
|
cuda_steram = cuda.Stream() |
|
|
|
vae_config = stream.vae.config |
|
vae_dtype = stream.vae.dtype |
|
|
|
stream.unet = UNet2DConditionModelEngine( |
|
unet_path, cuda_steram, use_cuda_graph=False |
|
) |
|
stream.vae = AutoencoderKLEngine( |
|
vae_encoder_path, |
|
vae_decoder_path, |
|
cuda_steram, |
|
stream.pipe.vae_scale_factor, |
|
use_cuda_graph=False, |
|
) |
|
setattr(stream.vae, "config", vae_config) |
|
setattr(stream.vae, "dtype", vae_dtype) |
|
|
|
gc.collect() |
|
torch.cuda.empty_cache() |
|
|
|
print("TensorRT acceleration enabled.") |
|
if acceleration == "sfast": |
|
from streamdiffusion.acceleration.sfast import ( |
|
accelerate_with_stable_fast, |
|
) |
|
|
|
stream = accelerate_with_stable_fast(stream) |
|
print("StableFast acceleration enabled.") |
|
except Exception: |
|
traceback.print_exc() |
|
print("Acceleration has failed. Falling back to normal mode.") |
|
|
|
stream.prepare( |
|
"", |
|
"", |
|
num_inference_steps=50, |
|
guidance_scale=1.1 |
|
if stream.cfg_type in ["full", "self", "initialize"] |
|
else 1.0, |
|
generator=torch.manual_seed(seed), |
|
seed=seed, |
|
) |
|
|
|
if self.use_safety_checker: |
|
from transformers import CLIPFeatureExtractor |
|
from diffusers.pipelines.stable_diffusion.safety_checker import ( |
|
StableDiffusionSafetyChecker, |
|
) |
|
|
|
self.safety_checker = StableDiffusionSafetyChecker.from_pretrained( |
|
"CompVis/stable-diffusion-safety-checker" |
|
).to(pipe.device) |
|
self.feature_extractor = CLIPFeatureExtractor.from_pretrained( |
|
"openai/clip-vit-base-patch32" |
|
) |
|
self.nsfw_fallback_img = Image.new("RGB", (512, 512), (0, 0, 0)) |
|
|
|
return stream |
|
|