Upload 3 files
Browse files- server/utils/__init__.py +0 -0
- server/utils/viewer.py +98 -0
- server/utils/wrapper.py +654 -0
server/utils/__init__.py
ADDED
File without changes
|
server/utils/viewer.py
ADDED
@@ -0,0 +1,98 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import sys
|
3 |
+
import threading
|
4 |
+
import time
|
5 |
+
import tkinter as tk
|
6 |
+
from multiprocessing import Queue
|
7 |
+
from typing import List
|
8 |
+
from PIL import Image, ImageTk
|
9 |
+
from streamdiffusion.image_utils import postprocess_image
|
10 |
+
|
11 |
+
sys.path.append(os.path.join(os.path.dirname(__file__), "..", ".."))
|
12 |
+
|
13 |
+
|
14 |
+
def update_image(image_data: Image.Image, label: tk.Label) -> None:
|
15 |
+
"""
|
16 |
+
Update the image displayed on a Tkinter label.
|
17 |
+
|
18 |
+
Parameters
|
19 |
+
----------
|
20 |
+
image_data : Image.Image
|
21 |
+
The image to be displayed.
|
22 |
+
label : tk.Label
|
23 |
+
The labels where the image will be updated.
|
24 |
+
"""
|
25 |
+
width = 512
|
26 |
+
height = 512
|
27 |
+
tk_image = ImageTk.PhotoImage(image_data, size=width)
|
28 |
+
label.configure(image=tk_image, width=width, height=height)
|
29 |
+
label.image = tk_image # keep a reference
|
30 |
+
|
31 |
+
def _receive_images(
|
32 |
+
queue: Queue, fps_queue: Queue, label: tk.Label, fps_label: tk.Label
|
33 |
+
) -> None:
|
34 |
+
"""
|
35 |
+
Continuously receive images from a queue and update the labels.
|
36 |
+
|
37 |
+
Parameters
|
38 |
+
----------
|
39 |
+
queue : Queue
|
40 |
+
The queue to receive images from.
|
41 |
+
fps_queue : Queue
|
42 |
+
The queue to put the calculated fps.
|
43 |
+
label : tk.Label
|
44 |
+
The label to update with images.
|
45 |
+
fps_label : tk.Label
|
46 |
+
The label to show fps.
|
47 |
+
"""
|
48 |
+
while True:
|
49 |
+
try:
|
50 |
+
if not queue.empty():
|
51 |
+
label.after(
|
52 |
+
0,
|
53 |
+
update_image,
|
54 |
+
postprocess_image(queue.get(block=False), output_type="pil")[0],
|
55 |
+
label,
|
56 |
+
)
|
57 |
+
if not fps_queue.empty():
|
58 |
+
fps_label.config(text=f"FPS: {fps_queue.get(block=False):.2f}")
|
59 |
+
|
60 |
+
time.sleep(0.0005)
|
61 |
+
except KeyboardInterrupt:
|
62 |
+
return
|
63 |
+
|
64 |
+
|
65 |
+
def receive_images(queue: Queue, fps_queue: Queue) -> None:
|
66 |
+
"""
|
67 |
+
Setup the Tkinter window and start the thread to receive images.
|
68 |
+
|
69 |
+
Parameters
|
70 |
+
----------
|
71 |
+
queue : Queue
|
72 |
+
The queue to receive images from.
|
73 |
+
fps_queue : Queue
|
74 |
+
The queue to put the calculated fps.
|
75 |
+
"""
|
76 |
+
root = tk.Tk()
|
77 |
+
root.title("Image Viewer")
|
78 |
+
label = tk.Label(root)
|
79 |
+
fps_label = tk.Label(root, text="FPS: 0")
|
80 |
+
label.grid(column=0)
|
81 |
+
fps_label.grid(column=1)
|
82 |
+
|
83 |
+
def on_closing():
|
84 |
+
print("window closed")
|
85 |
+
root.quit() # stop event loop
|
86 |
+
return
|
87 |
+
|
88 |
+
thread = threading.Thread(
|
89 |
+
target=_receive_images, args=(queue, fps_queue, label, fps_label), daemon=True
|
90 |
+
)
|
91 |
+
thread.start()
|
92 |
+
|
93 |
+
try:
|
94 |
+
root.protocol("WM_DELETE_WINDOW", on_closing)
|
95 |
+
root.mainloop()
|
96 |
+
except KeyboardInterrupt:
|
97 |
+
return
|
98 |
+
|
server/utils/wrapper.py
ADDED
@@ -0,0 +1,654 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gc
|
2 |
+
import os
|
3 |
+
from pathlib import Path
|
4 |
+
import traceback
|
5 |
+
from typing import List, Literal, Optional, Union, Dict
|
6 |
+
|
7 |
+
import numpy as np
|
8 |
+
import torch
|
9 |
+
from diffusers import AutoencoderTiny, StableDiffusionPipeline
|
10 |
+
from PIL import Image
|
11 |
+
from polygraphy import cuda
|
12 |
+
|
13 |
+
from streamdiffusion import StreamDiffusion
|
14 |
+
from streamdiffusion.image_utils import postprocess_image
|
15 |
+
|
16 |
+
|
17 |
+
torch.set_grad_enabled(False)
|
18 |
+
torch.backends.cuda.matmul.allow_tf32 = True
|
19 |
+
torch.backends.cudnn.allow_tf32 = True
|
20 |
+
|
21 |
+
|
22 |
+
class StreamDiffusionWrapper:
|
23 |
+
def __init__(
|
24 |
+
self,
|
25 |
+
model_id_or_path: str,
|
26 |
+
t_index_list: List[int],
|
27 |
+
lora_dict: Optional[Dict[str, float]] = None,
|
28 |
+
mode: Literal["img2img", "txt2img"] = "img2img",
|
29 |
+
output_type: Literal["pil", "pt", "np", "latent"] = "pil",
|
30 |
+
lcm_lora_id: Optional[str] = None,
|
31 |
+
vae_id: Optional[str] = None,
|
32 |
+
device: Literal["cpu", "cuda"] = "cuda",
|
33 |
+
dtype: torch.dtype = torch.float16,
|
34 |
+
frame_buffer_size: int = 1,
|
35 |
+
width: int = 512,
|
36 |
+
height: int = 512,
|
37 |
+
warmup: int = 10,
|
38 |
+
acceleration: Literal["none", "xformers", "tensorrt"] = "tensorrt",
|
39 |
+
do_add_noise: bool = True,
|
40 |
+
device_ids: Optional[List[int]] = None,
|
41 |
+
use_lcm_lora: bool = True,
|
42 |
+
use_tiny_vae: bool = True,
|
43 |
+
enable_similar_image_filter: bool = False,
|
44 |
+
similar_image_filter_threshold: float = 0.98,
|
45 |
+
similar_image_filter_max_skip_frame: int = 10,
|
46 |
+
use_denoising_batch: bool = True,
|
47 |
+
cfg_type: Literal["none", "full", "self", "initialize"] = "self",
|
48 |
+
seed: int = 2,
|
49 |
+
use_safety_checker: bool = False,
|
50 |
+
):
|
51 |
+
"""
|
52 |
+
Initializes the StreamDiffusionWrapper.
|
53 |
+
|
54 |
+
Parameters
|
55 |
+
----------
|
56 |
+
model_id_or_path : str
|
57 |
+
The model id or path to load.
|
58 |
+
t_index_list : List[int]
|
59 |
+
The t_index_list to use for inference.
|
60 |
+
lora_dict : Optional[Dict[str, float]], optional
|
61 |
+
The lora_dict to load, by default None.
|
62 |
+
Keys are the LoRA names and values are the LoRA scales.
|
63 |
+
Example: {"LoRA_1" : 0.5 , "LoRA_2" : 0.7 ,...}
|
64 |
+
mode : Literal["img2img", "txt2img"], optional
|
65 |
+
txt2img or img2img, by default "img2img".
|
66 |
+
output_type : Literal["pil", "pt", "np", "latent"], optional
|
67 |
+
The output type of image, by default "pil".
|
68 |
+
lcm_lora_id : Optional[str], optional
|
69 |
+
The lcm_lora_id to load, by default None.
|
70 |
+
If None, the default LCM-LoRA
|
71 |
+
("latent-consistency/lcm-lora-sdv1-5") will be used.
|
72 |
+
vae_id : Optional[str], optional
|
73 |
+
The vae_id to load, by default None.
|
74 |
+
If None, the default TinyVAE
|
75 |
+
("madebyollin/taesd") will be used.
|
76 |
+
device : Literal["cpu", "cuda"], optional
|
77 |
+
The device to use for inference, by default "cuda".
|
78 |
+
dtype : torch.dtype, optional
|
79 |
+
The dtype for inference, by default torch.float16.
|
80 |
+
frame_buffer_size : int, optional
|
81 |
+
The frame buffer size for denoising batch, by default 1.
|
82 |
+
width : int, optional
|
83 |
+
The width of the image, by default 512.
|
84 |
+
height : int, optional
|
85 |
+
The height of the image, by default 512.
|
86 |
+
warmup : int, optional
|
87 |
+
The number of warmup steps to perform, by default 10.
|
88 |
+
acceleration : Literal["none", "xformers", "tensorrt"], optional
|
89 |
+
The acceleration method, by default "tensorrt".
|
90 |
+
do_add_noise : bool, optional
|
91 |
+
Whether to add noise for following denoising steps or not,
|
92 |
+
by default True.
|
93 |
+
device_ids : Optional[List[int]], optional
|
94 |
+
The device ids to use for DataParallel, by default None.
|
95 |
+
use_lcm_lora : bool, optional
|
96 |
+
Whether to use LCM-LoRA or not, by default True.
|
97 |
+
use_tiny_vae : bool, optional
|
98 |
+
Whether to use TinyVAE or not, by default True.
|
99 |
+
enable_similar_image_filter : bool, optional
|
100 |
+
Whether to enable similar image filter or not,
|
101 |
+
by default False.
|
102 |
+
similar_image_filter_threshold : float, optional
|
103 |
+
The threshold for similar image filter, by default 0.98.
|
104 |
+
similar_image_filter_max_skip_frame : int, optional
|
105 |
+
The max skip frame for similar image filter, by default 10.
|
106 |
+
use_denoising_batch : bool, optional
|
107 |
+
Whether to use denoising batch or not, by default True.
|
108 |
+
cfg_type : Literal["none", "full", "self", "initialize"],
|
109 |
+
optional
|
110 |
+
The cfg_type for img2img mode, by default "self".
|
111 |
+
You cannot use anything other than "none" for txt2img mode.
|
112 |
+
seed : int, optional
|
113 |
+
The seed, by default 2.
|
114 |
+
use_safety_checker : bool, optional
|
115 |
+
Whether to use safety checker or not, by default False.
|
116 |
+
"""
|
117 |
+
self.sd_turbo = "turbo" in model_id_or_path
|
118 |
+
|
119 |
+
if mode == "txt2img":
|
120 |
+
if cfg_type != "none":
|
121 |
+
raise ValueError(
|
122 |
+
f"txt2img mode accepts only cfg_type = 'none', but got {cfg_type}"
|
123 |
+
)
|
124 |
+
if use_denoising_batch and frame_buffer_size > 1:
|
125 |
+
if not self.sd_turbo:
|
126 |
+
raise ValueError(
|
127 |
+
"txt2img mode cannot use denoising batch with frame_buffer_size > 1."
|
128 |
+
)
|
129 |
+
|
130 |
+
if mode == "img2img":
|
131 |
+
if not use_denoising_batch:
|
132 |
+
raise NotImplementedError(
|
133 |
+
"img2img mode must use denoising batch for now."
|
134 |
+
)
|
135 |
+
|
136 |
+
self.device = device
|
137 |
+
self.dtype = dtype
|
138 |
+
self.width = width
|
139 |
+
self.height = height
|
140 |
+
self.mode = mode
|
141 |
+
self.output_type = output_type
|
142 |
+
self.frame_buffer_size = frame_buffer_size
|
143 |
+
self.batch_size = (
|
144 |
+
len(t_index_list) * frame_buffer_size
|
145 |
+
if use_denoising_batch
|
146 |
+
else frame_buffer_size
|
147 |
+
)
|
148 |
+
|
149 |
+
self.use_denoising_batch = use_denoising_batch
|
150 |
+
self.use_safety_checker = use_safety_checker
|
151 |
+
|
152 |
+
self.stream: StreamDiffusion = self._load_model(
|
153 |
+
model_id_or_path=model_id_or_path,
|
154 |
+
lora_dict=lora_dict,
|
155 |
+
lcm_lora_id=lcm_lora_id,
|
156 |
+
vae_id=vae_id,
|
157 |
+
t_index_list=t_index_list,
|
158 |
+
acceleration=acceleration,
|
159 |
+
warmup=warmup,
|
160 |
+
do_add_noise=do_add_noise,
|
161 |
+
use_lcm_lora=use_lcm_lora,
|
162 |
+
use_tiny_vae=use_tiny_vae,
|
163 |
+
cfg_type=cfg_type,
|
164 |
+
seed=seed,
|
165 |
+
)
|
166 |
+
|
167 |
+
if device_ids is not None:
|
168 |
+
self.stream.unet = torch.nn.DataParallel(
|
169 |
+
self.stream.unet, device_ids=device_ids
|
170 |
+
)
|
171 |
+
|
172 |
+
if enable_similar_image_filter:
|
173 |
+
self.stream.enable_similar_image_filter(similar_image_filter_threshold, similar_image_filter_max_skip_frame)
|
174 |
+
|
175 |
+
def prepare(
|
176 |
+
self,
|
177 |
+
prompt: str,
|
178 |
+
negative_prompt: str = "",
|
179 |
+
num_inference_steps: int = 50,
|
180 |
+
guidance_scale: float = 1.2,
|
181 |
+
delta: float = 1.0,
|
182 |
+
) -> None:
|
183 |
+
"""
|
184 |
+
Prepares the model for inference.
|
185 |
+
|
186 |
+
Parameters
|
187 |
+
----------
|
188 |
+
prompt : str
|
189 |
+
The prompt to generate images from.
|
190 |
+
num_inference_steps : int, optional
|
191 |
+
The number of inference steps to perform, by default 50.
|
192 |
+
guidance_scale : float, optional
|
193 |
+
The guidance scale to use, by default 1.2.
|
194 |
+
delta : float, optional
|
195 |
+
The delta multiplier of virtual residual noise,
|
196 |
+
by default 1.0.
|
197 |
+
"""
|
198 |
+
self.stream.prepare(
|
199 |
+
prompt,
|
200 |
+
negative_prompt,
|
201 |
+
num_inference_steps=num_inference_steps,
|
202 |
+
guidance_scale=guidance_scale,
|
203 |
+
delta=delta,
|
204 |
+
)
|
205 |
+
|
206 |
+
def __call__(
|
207 |
+
self,
|
208 |
+
image: Optional[Union[str, Image.Image, torch.Tensor]] = None,
|
209 |
+
prompt: Optional[str] = None,
|
210 |
+
) -> Union[Image.Image, List[Image.Image]]:
|
211 |
+
"""
|
212 |
+
Performs img2img or txt2img based on the mode.
|
213 |
+
|
214 |
+
Parameters
|
215 |
+
----------
|
216 |
+
image : Optional[Union[str, Image.Image, torch.Tensor]]
|
217 |
+
The image to generate from.
|
218 |
+
prompt : Optional[str]
|
219 |
+
The prompt to generate images from.
|
220 |
+
|
221 |
+
Returns
|
222 |
+
-------
|
223 |
+
Union[Image.Image, List[Image.Image]]
|
224 |
+
The generated image.
|
225 |
+
"""
|
226 |
+
if self.mode == "img2img":
|
227 |
+
return self.img2img(image)
|
228 |
+
else:
|
229 |
+
return self.txt2img(prompt)
|
230 |
+
|
231 |
+
def txt2img(
|
232 |
+
self, prompt: Optional[str] = None
|
233 |
+
) -> Union[Image.Image, List[Image.Image], torch.Tensor, np.ndarray]:
|
234 |
+
"""
|
235 |
+
Performs txt2img.
|
236 |
+
|
237 |
+
Parameters
|
238 |
+
----------
|
239 |
+
prompt : Optional[str]
|
240 |
+
The prompt to generate images from.
|
241 |
+
|
242 |
+
Returns
|
243 |
+
-------
|
244 |
+
Union[Image.Image, List[Image.Image]]
|
245 |
+
The generated image.
|
246 |
+
"""
|
247 |
+
if prompt is not None:
|
248 |
+
self.stream.update_prompt(prompt)
|
249 |
+
|
250 |
+
if self.sd_turbo:
|
251 |
+
image_tensor = self.stream.txt2img_sd_turbo(self.batch_size)
|
252 |
+
else:
|
253 |
+
image_tensor = self.stream.txt2img(self.frame_buffer_size)
|
254 |
+
image = self.postprocess_image(image_tensor, output_type=self.output_type)
|
255 |
+
|
256 |
+
if self.use_safety_checker:
|
257 |
+
safety_checker_input = self.feature_extractor(
|
258 |
+
image, return_tensors="pt"
|
259 |
+
).to(self.device)
|
260 |
+
_, has_nsfw_concept = self.safety_checker(
|
261 |
+
images=image_tensor.to(self.dtype),
|
262 |
+
clip_input=safety_checker_input.pixel_values.to(self.dtype),
|
263 |
+
)
|
264 |
+
image = self.nsfw_fallback_img if has_nsfw_concept[0] else image
|
265 |
+
|
266 |
+
return image
|
267 |
+
|
268 |
+
def img2img(
|
269 |
+
self, image: Union[str, Image.Image, torch.Tensor]
|
270 |
+
) -> Union[Image.Image, List[Image.Image], torch.Tensor, np.ndarray]:
|
271 |
+
"""
|
272 |
+
Performs img2img.
|
273 |
+
|
274 |
+
Parameters
|
275 |
+
----------
|
276 |
+
image : Union[str, Image.Image, torch.Tensor]
|
277 |
+
The image to generate from.
|
278 |
+
|
279 |
+
Returns
|
280 |
+
-------
|
281 |
+
Image.Image
|
282 |
+
The generated image.
|
283 |
+
"""
|
284 |
+
if isinstance(image, str) or isinstance(image, Image.Image):
|
285 |
+
image = self.preprocess_image(image)
|
286 |
+
|
287 |
+
image_tensor = self.stream(image)
|
288 |
+
image = self.postprocess_image(image_tensor, output_type=self.output_type)
|
289 |
+
|
290 |
+
if self.use_safety_checker:
|
291 |
+
safety_checker_input = self.feature_extractor(
|
292 |
+
image, return_tensors="pt"
|
293 |
+
).to(self.device)
|
294 |
+
_, has_nsfw_concept = self.safety_checker(
|
295 |
+
images=image_tensor.to(self.dtype),
|
296 |
+
clip_input=safety_checker_input.pixel_values.to(self.dtype),
|
297 |
+
)
|
298 |
+
image = self.nsfw_fallback_img if has_nsfw_concept[0] else image
|
299 |
+
|
300 |
+
return image
|
301 |
+
|
302 |
+
def preprocess_image(self, image: Union[str, Image.Image]) -> torch.Tensor:
|
303 |
+
"""
|
304 |
+
Preprocesses the image.
|
305 |
+
|
306 |
+
Parameters
|
307 |
+
----------
|
308 |
+
image : Union[str, Image.Image, torch.Tensor]
|
309 |
+
The image to preprocess.
|
310 |
+
|
311 |
+
Returns
|
312 |
+
-------
|
313 |
+
torch.Tensor
|
314 |
+
The preprocessed image.
|
315 |
+
"""
|
316 |
+
if isinstance(image, str):
|
317 |
+
image = Image.open(image).convert("RGB").resize((self.width, self.height))
|
318 |
+
if isinstance(image, Image.Image):
|
319 |
+
image = image.convert("RGB").resize((self.width, self.height))
|
320 |
+
|
321 |
+
return self.stream.image_processor.preprocess(
|
322 |
+
image, self.height, self.width
|
323 |
+
).to(device=self.device, dtype=self.dtype)
|
324 |
+
|
325 |
+
def postprocess_image(
|
326 |
+
self, image_tensor: torch.Tensor, output_type: str = "pil"
|
327 |
+
) -> Union[Image.Image, List[Image.Image], torch.Tensor, np.ndarray]:
|
328 |
+
"""
|
329 |
+
Postprocesses the image.
|
330 |
+
|
331 |
+
Parameters
|
332 |
+
----------
|
333 |
+
image_tensor : torch.Tensor
|
334 |
+
The image tensor to postprocess.
|
335 |
+
|
336 |
+
Returns
|
337 |
+
-------
|
338 |
+
Union[Image.Image, List[Image.Image]]
|
339 |
+
The postprocessed image.
|
340 |
+
"""
|
341 |
+
if self.frame_buffer_size > 1:
|
342 |
+
return postprocess_image(image_tensor.cpu(), output_type=output_type)
|
343 |
+
else:
|
344 |
+
return postprocess_image(image_tensor.cpu(), output_type=output_type)[0]
|
345 |
+
|
346 |
+
def _load_model(
|
347 |
+
self,
|
348 |
+
model_id_or_path: str,
|
349 |
+
t_index_list: List[int],
|
350 |
+
lora_dict: Optional[Dict[str, float]] = None,
|
351 |
+
lcm_lora_id: Optional[str] = None,
|
352 |
+
vae_id: Optional[str] = None,
|
353 |
+
acceleration: Literal["none", "sfast", "tensorrt"] = "tensorrt",
|
354 |
+
warmup: int = 10,
|
355 |
+
do_add_noise: bool = True,
|
356 |
+
use_lcm_lora: bool = True,
|
357 |
+
use_tiny_vae: bool = True,
|
358 |
+
cfg_type: Literal["none", "full", "self", "initialize"] = "self",
|
359 |
+
seed: int = 2,
|
360 |
+
) -> StreamDiffusion:
|
361 |
+
"""
|
362 |
+
Loads the model.
|
363 |
+
|
364 |
+
This method does the following:
|
365 |
+
|
366 |
+
1. Loads the model from the model_id_or_path.
|
367 |
+
2. Loads and fuses the LCM-LoRA model from the lcm_lora_id if needed.
|
368 |
+
3. Loads the VAE model from the vae_id if needed.
|
369 |
+
4. Enables acceleration if needed.
|
370 |
+
5. Prepares the model for inference.
|
371 |
+
6. Load the safety checker if needed.
|
372 |
+
|
373 |
+
Parameters
|
374 |
+
----------
|
375 |
+
model_id_or_path : str
|
376 |
+
The model id or path to load.
|
377 |
+
t_index_list : List[int]
|
378 |
+
The t_index_list to use for inference.
|
379 |
+
lora_dict : Optional[Dict[str, float]], optional
|
380 |
+
The lora_dict to load, by default None.
|
381 |
+
Keys are the LoRA names and values are the LoRA scales.
|
382 |
+
Example: {"LoRA_1" : 0.5 , "LoRA_2" : 0.7 ,...}
|
383 |
+
lcm_lora_id : Optional[str], optional
|
384 |
+
The lcm_lora_id to load, by default None.
|
385 |
+
vae_id : Optional[str], optional
|
386 |
+
The vae_id to load, by default None.
|
387 |
+
acceleration : Literal["none", "xfomers", "sfast", "tensorrt"], optional
|
388 |
+
The acceleration method, by default "tensorrt".
|
389 |
+
warmup : int, optional
|
390 |
+
The number of warmup steps to perform, by default 10.
|
391 |
+
do_add_noise : bool, optional
|
392 |
+
Whether to add noise for following denoising steps or not,
|
393 |
+
by default True.
|
394 |
+
use_lcm_lora : bool, optional
|
395 |
+
Whether to use LCM-LoRA or not, by default True.
|
396 |
+
use_tiny_vae : bool, optional
|
397 |
+
Whether to use TinyVAE or not, by default True.
|
398 |
+
cfg_type : Literal["none", "full", "self", "initialize"],
|
399 |
+
optional
|
400 |
+
The cfg_type for img2img mode, by default "self".
|
401 |
+
You cannot use anything other than "none" for txt2img mode.
|
402 |
+
seed : int, optional
|
403 |
+
The seed, by default 2.
|
404 |
+
|
405 |
+
Returns
|
406 |
+
-------
|
407 |
+
StreamDiffusion
|
408 |
+
The loaded model.
|
409 |
+
"""
|
410 |
+
|
411 |
+
try: # Load from local directory
|
412 |
+
pipe: StableDiffusionPipeline = StableDiffusionPipeline.from_pretrained(
|
413 |
+
model_id_or_path,
|
414 |
+
).to(device=self.device, dtype=self.dtype)
|
415 |
+
|
416 |
+
except ValueError: # Load from huggingface
|
417 |
+
pipe: StableDiffusionPipeline = StableDiffusionPipeline.from_single_file(
|
418 |
+
model_id_or_path,
|
419 |
+
).to(device=self.device, dtype=self.dtype)
|
420 |
+
except Exception: # No model found
|
421 |
+
traceback.print_exc()
|
422 |
+
print("Model load has failed. Doesn't exist.")
|
423 |
+
exit()
|
424 |
+
|
425 |
+
stream = StreamDiffusion(
|
426 |
+
pipe=pipe,
|
427 |
+
t_index_list=t_index_list,
|
428 |
+
torch_dtype=self.dtype,
|
429 |
+
width=self.width,
|
430 |
+
height=self.height,
|
431 |
+
do_add_noise=do_add_noise,
|
432 |
+
frame_buffer_size=self.frame_buffer_size,
|
433 |
+
use_denoising_batch=self.use_denoising_batch,
|
434 |
+
cfg_type=cfg_type,
|
435 |
+
)
|
436 |
+
if not self.sd_turbo:
|
437 |
+
if use_lcm_lora:
|
438 |
+
if lcm_lora_id is not None:
|
439 |
+
stream.load_lcm_lora(
|
440 |
+
pretrained_model_name_or_path_or_dict=lcm_lora_id
|
441 |
+
)
|
442 |
+
else:
|
443 |
+
stream.load_lcm_lora()
|
444 |
+
stream.fuse_lora()
|
445 |
+
|
446 |
+
if lora_dict is not None:
|
447 |
+
for lora_name, lora_scale in lora_dict.items():
|
448 |
+
stream.load_lora(lora_name)
|
449 |
+
stream.fuse_lora(lora_scale=lora_scale)
|
450 |
+
print(f"Use LoRA: {lora_name} in weights {lora_scale}")
|
451 |
+
|
452 |
+
if use_tiny_vae:
|
453 |
+
if vae_id is not None:
|
454 |
+
stream.vae = AutoencoderTiny.from_pretrained(vae_id).to(
|
455 |
+
device=pipe.device, dtype=pipe.dtype
|
456 |
+
)
|
457 |
+
else:
|
458 |
+
stream.vae = AutoencoderTiny.from_pretrained("madebyollin/taesd").to(
|
459 |
+
device=pipe.device, dtype=pipe.dtype
|
460 |
+
)
|
461 |
+
|
462 |
+
try:
|
463 |
+
if acceleration == "xformers":
|
464 |
+
stream.pipe.enable_xformers_memory_efficient_attention()
|
465 |
+
if acceleration == "tensorrt":
|
466 |
+
from streamdiffusion.acceleration.tensorrt import (
|
467 |
+
TorchVAEEncoder,
|
468 |
+
compile_unet,
|
469 |
+
compile_vae_decoder,
|
470 |
+
compile_vae_encoder,
|
471 |
+
)
|
472 |
+
from streamdiffusion.acceleration.tensorrt.engine import (
|
473 |
+
AutoencoderKLEngine,
|
474 |
+
UNet2DConditionModelEngine,
|
475 |
+
)
|
476 |
+
from streamdiffusion.acceleration.tensorrt.models import (
|
477 |
+
VAE,
|
478 |
+
UNet,
|
479 |
+
VAEEncoder,
|
480 |
+
)
|
481 |
+
|
482 |
+
def create_prefix(
|
483 |
+
model_id_or_path: str,
|
484 |
+
max_batch_size: int,
|
485 |
+
min_batch_size: int,
|
486 |
+
):
|
487 |
+
maybe_path = Path(model_id_or_path)
|
488 |
+
if maybe_path.exists():
|
489 |
+
return f"{maybe_path.stem}--lcm_lora-{use_lcm_lora}--tiny_vae-{use_tiny_vae}--max_batch-{max_batch_size}--min_batch-{min_batch_size}--mode-{self.mode}"
|
490 |
+
else:
|
491 |
+
return f"{model_id_or_path}--lcm_lora-{use_lcm_lora}--tiny_vae-{use_tiny_vae}--max_batch-{max_batch_size}--min_batch-{min_batch_size}--mode-{self.mode}"
|
492 |
+
|
493 |
+
engine_dir = os.path.join("engines")
|
494 |
+
unet_path = os.path.join(
|
495 |
+
engine_dir,
|
496 |
+
create_prefix(
|
497 |
+
model_id_or_path=model_id_or_path,
|
498 |
+
max_batch_size=stream.trt_unet_batch_size,
|
499 |
+
min_batch_size=stream.trt_unet_batch_size,
|
500 |
+
),
|
501 |
+
"unet.engine",
|
502 |
+
)
|
503 |
+
vae_encoder_path = os.path.join(
|
504 |
+
engine_dir,
|
505 |
+
create_prefix(
|
506 |
+
model_id_or_path=model_id_or_path,
|
507 |
+
max_batch_size=self.batch_size
|
508 |
+
if self.mode == "txt2img"
|
509 |
+
else stream.frame_bff_size,
|
510 |
+
min_batch_size=self.batch_size
|
511 |
+
if self.mode == "txt2img"
|
512 |
+
else stream.frame_bff_size,
|
513 |
+
),
|
514 |
+
"vae_encoder.engine",
|
515 |
+
)
|
516 |
+
vae_decoder_path = os.path.join(
|
517 |
+
engine_dir,
|
518 |
+
create_prefix(
|
519 |
+
model_id_or_path=model_id_or_path,
|
520 |
+
max_batch_size=self.batch_size
|
521 |
+
if self.mode == "txt2img"
|
522 |
+
else stream.frame_bff_size,
|
523 |
+
min_batch_size=self.batch_size
|
524 |
+
if self.mode == "txt2img"
|
525 |
+
else stream.frame_bff_size,
|
526 |
+
),
|
527 |
+
"vae_decoder.engine",
|
528 |
+
)
|
529 |
+
|
530 |
+
if not os.path.exists(unet_path):
|
531 |
+
os.makedirs(os.path.dirname(unet_path), exist_ok=True)
|
532 |
+
unet_model = UNet(
|
533 |
+
fp16=True,
|
534 |
+
device=stream.device,
|
535 |
+
max_batch_size=stream.trt_unet_batch_size,
|
536 |
+
min_batch_size=stream.trt_unet_batch_size,
|
537 |
+
embedding_dim=stream.text_encoder.config.hidden_size,
|
538 |
+
unet_dim=stream.unet.config.in_channels,
|
539 |
+
)
|
540 |
+
compile_unet(
|
541 |
+
stream.unet,
|
542 |
+
unet_model,
|
543 |
+
unet_path + ".onnx",
|
544 |
+
unet_path + ".opt.onnx",
|
545 |
+
unet_path,
|
546 |
+
opt_batch_size=stream.trt_unet_batch_size,
|
547 |
+
)
|
548 |
+
|
549 |
+
if not os.path.exists(vae_decoder_path):
|
550 |
+
os.makedirs(os.path.dirname(vae_decoder_path), exist_ok=True)
|
551 |
+
stream.vae.forward = stream.vae.decode
|
552 |
+
vae_decoder_model = VAE(
|
553 |
+
device=stream.device,
|
554 |
+
max_batch_size=self.batch_size
|
555 |
+
if self.mode == "txt2img"
|
556 |
+
else stream.frame_bff_size,
|
557 |
+
min_batch_size=self.batch_size
|
558 |
+
if self.mode == "txt2img"
|
559 |
+
else stream.frame_bff_size,
|
560 |
+
)
|
561 |
+
compile_vae_decoder(
|
562 |
+
stream.vae,
|
563 |
+
vae_decoder_model,
|
564 |
+
vae_decoder_path + ".onnx",
|
565 |
+
vae_decoder_path + ".opt.onnx",
|
566 |
+
vae_decoder_path,
|
567 |
+
opt_batch_size=self.batch_size
|
568 |
+
if self.mode == "txt2img"
|
569 |
+
else stream.frame_bff_size,
|
570 |
+
)
|
571 |
+
delattr(stream.vae, "forward")
|
572 |
+
|
573 |
+
if not os.path.exists(vae_encoder_path):
|
574 |
+
os.makedirs(os.path.dirname(vae_encoder_path), exist_ok=True)
|
575 |
+
vae_encoder = TorchVAEEncoder(stream.vae).to(torch.device("cuda"))
|
576 |
+
vae_encoder_model = VAEEncoder(
|
577 |
+
device=stream.device,
|
578 |
+
max_batch_size=self.batch_size
|
579 |
+
if self.mode == "txt2img"
|
580 |
+
else stream.frame_bff_size,
|
581 |
+
min_batch_size=self.batch_size
|
582 |
+
if self.mode == "txt2img"
|
583 |
+
else stream.frame_bff_size,
|
584 |
+
)
|
585 |
+
compile_vae_encoder(
|
586 |
+
vae_encoder,
|
587 |
+
vae_encoder_model,
|
588 |
+
vae_encoder_path + ".onnx",
|
589 |
+
vae_encoder_path + ".opt.onnx",
|
590 |
+
vae_encoder_path,
|
591 |
+
opt_batch_size=self.batch_size
|
592 |
+
if self.mode == "txt2img"
|
593 |
+
else stream.frame_bff_size,
|
594 |
+
)
|
595 |
+
|
596 |
+
cuda_steram = cuda.Stream()
|
597 |
+
|
598 |
+
vae_config = stream.vae.config
|
599 |
+
vae_dtype = stream.vae.dtype
|
600 |
+
|
601 |
+
stream.unet = UNet2DConditionModelEngine(
|
602 |
+
unet_path, cuda_steram, use_cuda_graph=False
|
603 |
+
)
|
604 |
+
stream.vae = AutoencoderKLEngine(
|
605 |
+
vae_encoder_path,
|
606 |
+
vae_decoder_path,
|
607 |
+
cuda_steram,
|
608 |
+
stream.pipe.vae_scale_factor,
|
609 |
+
use_cuda_graph=False,
|
610 |
+
)
|
611 |
+
setattr(stream.vae, "config", vae_config)
|
612 |
+
setattr(stream.vae, "dtype", vae_dtype)
|
613 |
+
|
614 |
+
gc.collect()
|
615 |
+
torch.cuda.empty_cache()
|
616 |
+
|
617 |
+
print("TensorRT acceleration enabled.")
|
618 |
+
if acceleration == "sfast":
|
619 |
+
from streamdiffusion.acceleration.sfast import (
|
620 |
+
accelerate_with_stable_fast,
|
621 |
+
)
|
622 |
+
|
623 |
+
stream = accelerate_with_stable_fast(stream)
|
624 |
+
print("StableFast acceleration enabled.")
|
625 |
+
except Exception:
|
626 |
+
traceback.print_exc()
|
627 |
+
print("Acceleration has failed. Falling back to normal mode.")
|
628 |
+
|
629 |
+
stream.prepare(
|
630 |
+
"",
|
631 |
+
"",
|
632 |
+
num_inference_steps=50,
|
633 |
+
guidance_scale=1.1
|
634 |
+
if stream.cfg_type in ["full", "self", "initialize"]
|
635 |
+
else 1.0,
|
636 |
+
generator=torch.manual_seed(seed),
|
637 |
+
seed=seed,
|
638 |
+
)
|
639 |
+
|
640 |
+
if self.use_safety_checker:
|
641 |
+
from transformers import CLIPFeatureExtractor
|
642 |
+
from diffusers.pipelines.stable_diffusion.safety_checker import (
|
643 |
+
StableDiffusionSafetyChecker,
|
644 |
+
)
|
645 |
+
|
646 |
+
self.safety_checker = StableDiffusionSafetyChecker.from_pretrained(
|
647 |
+
"CompVis/stable-diffusion-safety-checker"
|
648 |
+
).to(pipe.device)
|
649 |
+
self.feature_extractor = CLIPFeatureExtractor.from_pretrained(
|
650 |
+
"openai/clip-vit-base-patch32"
|
651 |
+
)
|
652 |
+
self.nsfw_fallback_img = Image.new("RGB", (512, 512), (0, 0, 0))
|
653 |
+
|
654 |
+
return stream
|