|
import os |
|
|
|
import dashscope |
|
import pytest |
|
|
|
from core.model_runtime.entities.rerank_entities import RerankResult |
|
from core.model_runtime.errors.validate import CredentialsValidateFailedError |
|
from core.model_runtime.model_providers.tongyi.rerank.rerank import GTERerankModel |
|
|
|
|
|
def test_validate_credentials(): |
|
model = GTERerankModel() |
|
|
|
with pytest.raises(CredentialsValidateFailedError): |
|
model.validate_credentials(model="get-rank", credentials={"dashscope_api_key": "invalid_key"}) |
|
|
|
model.validate_credentials( |
|
model="get-rank", credentials={"dashscope_api_key": os.environ.get("TONGYI_DASHSCOPE_API_KEY")} |
|
) |
|
|
|
|
|
def test_invoke_model(): |
|
model = GTERerankModel() |
|
|
|
result = model.invoke( |
|
model=dashscope.TextReRank.Models.gte_rerank, |
|
credentials={"dashscope_api_key": os.environ.get("TONGYI_DASHSCOPE_API_KEY")}, |
|
query="什么是文本排序模型", |
|
docs=[ |
|
"文本排序模型广泛用于搜索引擎和推荐系统中,它们根据文本相关性对候选文本进行排序", |
|
"量子计算是计算科学的一个前沿领域", |
|
"预训练语言模型的发展给文本排序模型带来了新的进展", |
|
], |
|
score_threshold=0.7, |
|
) |
|
|
|
assert isinstance(result, RerankResult) |
|
assert len(result.docs) == 1 |
|
assert result.docs[0].index == 0 |
|
assert result.docs[0].score >= 0.7 |
|
|