import os import dashscope import pytest from core.model_runtime.entities.rerank_entities import RerankResult from core.model_runtime.errors.validate import CredentialsValidateFailedError from core.model_runtime.model_providers.tongyi.rerank.rerank import GTERerankModel def test_validate_credentials(): model = GTERerankModel() with pytest.raises(CredentialsValidateFailedError): model.validate_credentials(model="get-rank", credentials={"dashscope_api_key": "invalid_key"}) model.validate_credentials( model="get-rank", credentials={"dashscope_api_key": os.environ.get("TONGYI_DASHSCOPE_API_KEY")} ) def test_invoke_model(): model = GTERerankModel() result = model.invoke( model=dashscope.TextReRank.Models.gte_rerank, credentials={"dashscope_api_key": os.environ.get("TONGYI_DASHSCOPE_API_KEY")}, query="什么是文本排序模型", docs=[ "文本排序模型广泛用于搜索引擎和推荐系统中,它们根据文本相关性对候选文本进行排序", "量子计算是计算科学的一个前沿领域", "预训练语言模型的发展给文本排序模型带来了新的进展", ], score_threshold=0.7, ) assert isinstance(result, RerankResult) assert len(result.docs) == 1 assert result.docs[0].index == 0 assert result.docs[0].score >= 0.7