File size: 15,692 Bytes
4c8156b
 
 
 
98abfe5
4c8156b
 
 
 
 
2c12efa
 
 
 
 
 
 
 
 
 
 
 
98abfe5
34e73c4
858ba25
7656d23
 
 
 
 
 
 
 
 
 
 
 
 
 
 
34e73c4
 
 
 
cdc00a0
 
 
 
 
34e73c4
6d3987f
07ad194
d91337f
 
6d3987f
 
 
b5cd0e0
533cad9
8c194a0
05292fd
34e73c4
2c12efa
 
 
 
 
 
 
 
 
 
 
af99749
2c12efa
 
 
4c8156b
c68758e
4c8156b
 
 
 
 
24b9734
 
 
 
 
 
 
 
 
4c8156b
24b9734
 
4c8156b
 
 
 
 
 
 
 
 
2c12efa
 
 
 
 
 
d6d5054
2c12efa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4c8156b
 
 
 
 
 
2c12efa
 
 
4c8156b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
48a54dd
 
c68758e
4c8156b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
import gradio as gr
import tensorflow as tf
import numpy as np
import cv2
from PIL import Image
from huggingface_hub import from_pretrained_keras

def resize_image(img_in,input_height,input_width):
    return cv2.resize( img_in, ( input_width,input_height) ,interpolation=cv2.INTER_NEAREST)

def otsu_copy_binary(img):
    img_r=np.zeros((img.shape[0],img.shape[1],3))
    img1=img[:,:,0]

    retval1, threshold1 = cv2.threshold(img1, 0, 255, cv2.THRESH_BINARY+cv2.THRESH_OTSU)

    img_r[:,:,0]=threshold1
    img_r[:,:,1]=threshold1
    img_r[:,:,2]=threshold1

    return img_r

def visualize_model_output(prediction, img):
    unique_classes = np.unique(prediction[:,:,0])
    rgb_colors = {'0' : [255, 255, 255],
                 '1' : [255, 0, 0],
                 '2' : [255, 125, 0],
                 '3' : [255, 0, 125],
                 '4' : [125, 125, 125],
                 '5' : [125, 125, 0],
                 '6' : [0, 125, 255],
                 '7' : [0, 125, 0],
                 '8' : [125, 125, 125],
                 '9' : [0, 125, 255],
                 '10' : [125, 0, 125],
                 '11' : [0, 255, 0],
                 '12' : [0, 0, 255],
                 '13' : [0, 255, 255],
                 '14' : [255, 125, 125],
                 '15' : [255, 0, 255]}

    output = np.zeros(prediction.shape)

    for unq_class in unique_classes:
        print(unq_class,'unq_class')
        rgb_class_unique = rgb_colors[str(int(unq_class))]
        output[:,:,0][prediction[:,:,0]==unq_class] = rgb_class_unique[0]
        output[:,:,1][prediction[:,:,0]==unq_class] = rgb_class_unique[1]
        output[:,:,2][prediction[:,:,0]==unq_class] = rgb_class_unique[2]



    img = resize_image(img, output.shape[0], output.shape[1])

    output = output.astype(np.int32)
    img = img.astype(np.int32)

    
    
    added_image = cv2.addWeighted(img,0.5,output,0.1,0)
    return added_image

def return_num_columns(img):
    model_classifier = from_pretrained_keras("SBB/eynollah-column-classifier")
    img_1ch = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)

    img_1ch = img_1ch / 255.0
    img_1ch = cv2.resize(img_1ch, (448, 448), interpolation=cv2.INTER_NEAREST)
    img_in = np.zeros((1, img_1ch.shape[0], img_1ch.shape[1], 3))
    img_in[0, :, :, 0] = img_1ch[:, :]
    img_in[0, :, :, 1] = img_1ch[:, :]
    img_in[0, :, :, 2] = img_1ch[:, :]
              
    label_p_pred = model_classifier.predict(img_in, verbose=0)
    num_col = np.argmax(label_p_pred[0]) + 1
    return num_col
    
def do_prediction(model_name, img):
    img_org = np.copy(img)
    model = from_pretrained_keras(model_name)

    match model_name:
        # numerical output
        case "SBB/eynollah-column-classifier": 

            img_1ch = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)

            img_1ch = img_1ch / 255.0
            img_1ch = cv2.resize(img_1ch, (448, 448), interpolation=cv2.INTER_NEAREST)
            img_in = np.zeros((1, img_1ch.shape[0], img_1ch.shape[1], 3))
            img_in[0, :, :, 0] = img_1ch[:, :]
            img_in[0, :, :, 1] = img_1ch[:, :]
            img_in[0, :, :, 2] = img_1ch[:, :]
                      
            label_p_pred = model.predict(img_in, verbose=0)
            num_col = np.argmax(label_p_pred[0]) + 1
            return "Found {} columns".format(num_col), None
                            
        # bitmap output
        case "SBB/eynollah-binarization" | "SBB/eynollah-page-extraction" | "SBB/eynollah-textline" | "SBB/eynollah-textline_light" | "SBB/eynollah-enhancement" | "SBB/eynollah-tables" | "SBB/eynollah-main-regions" | "SBB/eynollah-main-regions-aug-rotation" | "SBB/eynollah-main-regions-aug-scaling" | "SBB/eynollah-main-regions-ensembled" | "SBB/eynollah-full-regions-1column" | "SBB/eynollah-full-regions-3pluscolumn": 
            
            img_height_model=model.layers[len(model.layers)-1].output_shape[1]
            img_width_model=model.layers[len(model.layers)-1].output_shape[2]
            n_classes=model.layers[len(model.layers)-1].output_shape[3]



            img_org = np.copy(img)
            img_height_h = img_org.shape[0]
            img_width_h = img_org.shape[1]
    
            num_col_classifier = return_num_columns(img)
    
            
            
            if num_col_classifier == 1:
                img_w_new = 1000
                img_h_new = int(img_org.shape[0] / float(img_org.shape[1]) * img_w_new)
                
            elif num_col_classifier == 2:
                img_w_new = 1500
                img_h_new = int(img_org.shape[0] / float(img_org.shape[1]) * img_w_new)
                
            elif num_col_classifier == 3:
                img_w_new = 2000
                img_h_new = int(img_org.shape[0] / float(img_org.shape[1]) * img_w_new)
                
            elif num_col_classifier == 4:
                img_w_new = 2500
                img_h_new = int(img_org.shape[0] / float(img_org.shape[1]) * img_w_new)
            elif num_col_classifier == 5:
                img_w_new = 3000
                img_h_new = int(img_org.shape[0] / float(img_org.shape[1]) * img_w_new)
            else:
                img_w_new = 4000
                img_h_new = int(img_org.shape[0] / float(img_org.shape[1]) * img_w_new)
            img_resized = resize_image(img,img_h_new, img_w_new )

            img = otsu_copy_binary(img_resized)

            

            if img.shape[0] < img_height_model:
                img = resize_image(img, img_height_model, img.shape[1])

            if img.shape[1] < img_width_model:
                img = resize_image(img, img.shape[0], img_width_model)


            

            marginal_of_patch_percent = 0.1
            margin = int(marginal_of_patch_percent * img_height_model)
            width_mid = img_width_model - 2 * margin
            height_mid = img_height_model - 2 * margin
            img = img / float(255.0)
            img = img.astype(np.float16)
            img_h = img.shape[0]
            img_w = img.shape[1]
            prediction_true = np.zeros((img_h, img_w, 3))
            mask_true = np.zeros((img_h, img_w))
            nxf = img_w / float(width_mid)
            nyf = img_h / float(height_mid)
            nxf = int(nxf) + 1 if nxf > int(nxf) else int(nxf)
            nyf = int(nyf) + 1 if nyf > int(nyf) else int(nyf)

            for i in range(nxf):
                for j in range(nyf):
                    if i == 0:
                        index_x_d = i * width_mid
                        index_x_u = index_x_d + img_width_model
                    else:
                        index_x_d = i * width_mid
                        index_x_u = index_x_d + img_width_model
                    if j == 0:
                        index_y_d = j * height_mid
                        index_y_u = index_y_d + img_height_model
                    else:
                        index_y_d = j * height_mid
                        index_y_u = index_y_d + img_height_model
                    if index_x_u > img_w:
                        index_x_u = img_w
                        index_x_d = img_w - img_width_model
                    if index_y_u > img_h:
                        index_y_u = img_h
                        index_y_d = img_h - img_height_model

                    img_patch = img[index_y_d:index_y_u, index_x_d:index_x_u, :]
                    label_p_pred = model.predict(img_patch.reshape(1, img_patch.shape[0], img_patch.shape[1], img_patch.shape[2]),
                                                 verbose=0)

                    seg = np.argmax(label_p_pred, axis=3)[0]

                    seg_color = np.repeat(seg[:, :, np.newaxis], 3, axis=2)

                    if i == 0 and j == 0:
                        seg_color = seg_color[0 : seg_color.shape[0] - margin, 0 : seg_color.shape[1] - margin, :]
                        #seg = seg[0 : seg.shape[0] - margin, 0 : seg.shape[1] - margin]
                        #mask_true[index_y_d + 0 : index_y_u - margin, index_x_d + 0 : index_x_u - margin] = seg
                        prediction_true[index_y_d + 0 : index_y_u - margin, index_x_d + 0 : index_x_u - margin, :] = seg_color
                    elif i == nxf - 1 and j == nyf - 1:
                        seg_color = seg_color[margin : seg_color.shape[0] - 0, margin : seg_color.shape[1] - 0, :]
                        #seg = seg[margin : seg.shape[0] - 0, margin : seg.shape[1] - 0]
                        #mask_true[index_y_d + margin : index_y_u - 0, index_x_d + margin : index_x_u - 0] = seg
                        prediction_true[index_y_d + margin : index_y_u - 0, index_x_d + margin : index_x_u - 0, :] = seg_color
                    elif i == 0 and j == nyf - 1:
                        seg_color = seg_color[margin : seg_color.shape[0] - 0, 0 : seg_color.shape[1] - margin, :]
                        #seg = seg[margin : seg.shape[0] - 0, 0 : seg.shape[1] - margin]
                        #mask_true[index_y_d + margin : index_y_u - 0, index_x_d + 0 : index_x_u - margin] = seg
                        prediction_true[index_y_d + margin : index_y_u - 0, index_x_d + 0 : index_x_u - margin, :] = seg_color
                    elif i == nxf - 1 and j == 0:
                        seg_color = seg_color[0 : seg_color.shape[0] - margin, margin : seg_color.shape[1] - 0, :]
                        #seg = seg[0 : seg.shape[0] - margin, margin : seg.shape[1] - 0]
                        #mask_true[index_y_d + 0 : index_y_u - margin, index_x_d + margin : index_x_u - 0] = seg
                        prediction_true[index_y_d + 0 : index_y_u - margin, index_x_d + margin : index_x_u - 0, :] = seg_color
                    elif i == 0 and j != 0 and j != nyf - 1:
                        seg_color = seg_color[margin : seg_color.shape[0] - margin, 0 : seg_color.shape[1] - margin, :]
                        #seg = seg[margin : seg.shape[0] - margin, 0 : seg.shape[1] - margin]
                        #mask_true[index_y_d + margin : index_y_u - margin, index_x_d + 0 : index_x_u - margin] = seg
                        prediction_true[index_y_d + margin : index_y_u - margin, index_x_d + 0 : index_x_u - margin, :] = seg_color
                    elif i == nxf - 1 and j != 0 and j != nyf - 1:
                        seg_color = seg_color[margin : seg_color.shape[0] - margin, margin : seg_color.shape[1] - 0, :]
                        #seg = seg[margin : seg.shape[0] - margin, margin : seg.shape[1] - 0]
                        #mask_true[index_y_d + margin : index_y_u - margin, index_x_d + margin : index_x_u - 0] = seg
                        prediction_true[index_y_d + margin : index_y_u - margin, index_x_d + margin : index_x_u - 0, :] = seg_color
                    elif i != 0 and i != nxf - 1 and j == 0:
                        seg_color = seg_color[0 : seg_color.shape[0] - margin, margin : seg_color.shape[1] - margin, :]
                        #seg = seg[0 : seg.shape[0] - margin, margin : seg.shape[1] - margin]
                        #mask_true[index_y_d + 0 : index_y_u - margin, index_x_d + margin : index_x_u - margin] = seg
                        prediction_true[index_y_d + 0 : index_y_u - margin, index_x_d + margin : index_x_u - margin, :] = seg_color
                    elif i != 0 and i != nxf - 1 and j == nyf - 1:
                        seg_color = seg_color[margin : seg_color.shape[0] - 0, margin : seg_color.shape[1] - margin, :]
                        #seg = seg[margin : seg.shape[0] - 0, margin : seg.shape[1] - margin]
                        #mask_true[index_y_d + margin : index_y_u - 0, index_x_d + margin : index_x_u - margin] = seg
                        prediction_true[index_y_d + margin : index_y_u - 0, index_x_d + margin : index_x_u - margin, :] = seg_color
                    else:
                        seg_color = seg_color[margin : seg_color.shape[0] - margin, margin : seg_color.shape[1] - margin, :]
                        #seg = seg[margin : seg.shape[0] - margin, margin : seg.shape[1] - margin]
                        #mask_true[index_y_d + margin : index_y_u - margin, index_x_d + margin : index_x_u - margin] = seg
                        prediction_true[index_y_d + margin : index_y_u - margin, index_x_d + margin : index_x_u - margin, :] = seg_color

            prediction_true = prediction_true.astype(np.uint8)            

            '''
            img = img / float(255.0)
            image = resize_image(image, 224,448)
            prediction = model.predict(image.reshape(1,224,448,image.shape[2]))
            prediction = tf.squeeze(tf.round(prediction))

            prediction = np.argmax(prediction,axis=2)

            prediction = np.repeat(prediction[:, :, np.newaxis]*255, 3, axis=2)
            print(prediction.shape)
            
            '''
            #prediction_true = prediction_true * -1
            #prediction_true = prediction_true + 1
            return "No numerical output", visualize_model_output(prediction_true,img_org)
        
        # catch-all (we should not reach this)
        case _:
            return None, None

title = "Welcome to the Eynollah Demo page! 👁️"
description = """
 <div class="row" style="display: flex">
  <div class="column" style="flex: 50%; font-size: 17px">
        This Space demonstrates the functionality of various Eynollah models developed at <a rel="nofollow" href="https://huggingface.co./SBB">SBB</a>.
        <br><br>
        The Eynollah suite introduces an <u>end-to-end pipeline</u> to extract layout, text lines and reading order for historic documents, where the output can be used as an input for OCR engines.
        Please keep in mind that with this demo you can just use <u>one of the 13 sub-modules</u> of the whole Eynollah system <u>at a time</u>.
  </div>
  <div class="column" style="flex: 5%; font-size: 17px"></div>
  <div class="column" style="flex: 45%; font-size: 17px">
    <strong style="font-size: 19px">Resources for more information:</strong>
        <ul>
            <li>The GitHub Repo can be found <a rel="nofollow" href="https://github.com/qurator-spk/eynollah">here</a></li>
            <li>Associated Paper: <a rel="nofollow" href="https://doi.org/10.1145/3604951.3605513">Document Layout Analysis with Deep Learning and Heuristics</a></li>
            <li>The full Eynollah pipeline can be viewed <a rel="nofollow" href="https://huggingface.co./spaces/SBB/eynollah-demo-test/blob/main/eynollah-flow.png">here</a></li>
        </ul>
    </li>
  </div>
</div> 
"""
iface = gr.Interface(
            title=title,
            description=description,
            fn=do_prediction, 
            inputs=[
                gr.Dropdown([
                    "SBB/eynollah-binarization", 
                    "SBB/eynollah-enhancement",
                    "SBB/eynollah-page-extraction", 
                    "SBB/eynollah-column-classifier",
                    "SBB/eynollah-tables",
                    "SBB/eynollah-textline",
                    "SBB/eynollah-textline_light",
                    "SBB/eynollah-main-regions",
                    "SBB/eynollah-main-regions-aug-rotation",
                    "SBB/eynollah-main-regions-aug-scaling",
                    "SBB/eynollah-main-regions-ensembled",
                    "SBB/eynollah-full-regions-1column",
                    "SBB/eynollah-full-regions-3pluscolumn"
                ], label="Select one model of the Eynollah suite 👇", info=""),
                gr.Image()
            ], 
            outputs=[
              gr.Textbox(label="Output of model (numerical or bitmap) ⬇️"),
              gr.Image()
            ],
            #examples=[['example-1.jpg']]
        )
iface.launch()