Spaces:
Runtime error
Runtime error
vahidrezanezhad
commited on
Commit
•
98abfe5
1
Parent(s):
0b19517
Update app.py
Browse files
app.py
CHANGED
@@ -2,12 +2,13 @@ import gradio as gr
|
|
2 |
import tensorflow as tf
|
3 |
import numpy as np
|
4 |
import cv2
|
|
|
5 |
from huggingface_hub import from_pretrained_keras
|
6 |
|
7 |
def resize_image(img_in,input_height,input_width):
|
8 |
return cv2.resize( img_in, ( input_width,input_height) ,interpolation=cv2.INTER_NEAREST)
|
9 |
|
10 |
-
def visualize_model_output(prediction):
|
11 |
unique_classes = np.unique(prediction[:,:,0])
|
12 |
rgb_colors = {'0' : [0, 0, 0],
|
13 |
'1' : [255, 0, 0],
|
@@ -37,7 +38,13 @@ def visualize_model_output(prediction):
|
|
37 |
output[:,:,1][prediction[:,:,0]==unq_class] = rgb_class_unique[1]
|
38 |
output[:,:,2][prediction[:,:,0]==unq_class] = rgb_class_unique[2]
|
39 |
|
40 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
41 |
|
42 |
|
43 |
def do_prediction(model_name, img):
|
@@ -169,7 +176,7 @@ def do_prediction(model_name, img):
|
|
169 |
'''
|
170 |
#prediction_true = prediction_true * -1
|
171 |
#prediction_true = prediction_true + 1
|
172 |
-
return "No numerical output", visualize_model_output(prediction_true)
|
173 |
|
174 |
# catch-all (we should not reach this)
|
175 |
case _:
|
|
|
2 |
import tensorflow as tf
|
3 |
import numpy as np
|
4 |
import cv2
|
5 |
+
from PIL import Image
|
6 |
from huggingface_hub import from_pretrained_keras
|
7 |
|
8 |
def resize_image(img_in,input_height,input_width):
|
9 |
return cv2.resize( img_in, ( input_width,input_height) ,interpolation=cv2.INTER_NEAREST)
|
10 |
|
11 |
+
def visualize_model_output(prediction, img):
|
12 |
unique_classes = np.unique(prediction[:,:,0])
|
13 |
rgb_colors = {'0' : [0, 0, 0],
|
14 |
'1' : [255, 0, 0],
|
|
|
38 |
output[:,:,1][prediction[:,:,0]==unq_class] = rgb_class_unique[1]
|
39 |
output[:,:,2][prediction[:,:,0]==unq_class] = rgb_class_unique[2]
|
40 |
|
41 |
+
output = output.astype(np.uint8)
|
42 |
+
im_pil_output = Image.fromarray(output)
|
43 |
+
im_pil = Image.fromarray(img)
|
44 |
+
|
45 |
+
im_pil.paste(im_pil_output, (0,0))
|
46 |
+
|
47 |
+
return im_pil.astype(np.uint8)
|
48 |
|
49 |
|
50 |
def do_prediction(model_name, img):
|
|
|
176 |
'''
|
177 |
#prediction_true = prediction_true * -1
|
178 |
#prediction_true = prediction_true + 1
|
179 |
+
return "No numerical output", visualize_model_output(prediction_true,img)
|
180 |
|
181 |
# catch-all (we should not reach this)
|
182 |
case _:
|