|
|
|
|
|
|
|
""" |
|
This module defines the Wav2Vec model, which is a pre-trained model for speech recognition and understanding. |
|
It inherits from the Wav2Vec2Model class in the transformers library and provides additional functionalities |
|
such as feature extraction and encoding. |
|
|
|
Classes: |
|
Wav2VecModel: Inherits from Wav2Vec2Model and adds additional methods for feature extraction and encoding. |
|
|
|
Functions: |
|
linear_interpolation: Interpolates the features based on the sequence length. |
|
""" |
|
|
|
import torch.nn.functional as F |
|
from transformers import Wav2Vec2Model |
|
from transformers.modeling_outputs import BaseModelOutput |
|
|
|
|
|
class Wav2VecModel(Wav2Vec2Model): |
|
""" |
|
Wav2VecModel is a custom model class that extends the Wav2Vec2Model class from the transformers library. |
|
It inherits all the functionality of the Wav2Vec2Model and adds additional methods for feature extraction and encoding. |
|
... |
|
|
|
Attributes: |
|
base_model (Wav2Vec2Model): The base Wav2Vec2Model object. |
|
|
|
Methods: |
|
forward(input_values, seq_len, attention_mask=None, mask_time_indices=None |
|
, output_attentions=None, output_hidden_states=None, return_dict=None): |
|
Forward pass of the Wav2VecModel. |
|
It takes input_values, seq_len, and other optional parameters as input and returns the output of the base model. |
|
|
|
feature_extract(input_values, seq_len): |
|
Extracts features from the input_values using the base model. |
|
|
|
encode(extract_features, attention_mask=None, mask_time_indices=None, output_attentions=None, output_hidden_states=None, return_dict=None): |
|
Encodes the extracted features using the base model and returns the encoded features. |
|
""" |
|
def forward( |
|
self, |
|
input_values, |
|
seq_len, |
|
attention_mask=None, |
|
mask_time_indices=None, |
|
output_attentions=None, |
|
output_hidden_states=None, |
|
return_dict=None, |
|
): |
|
""" |
|
Forward pass of the Wav2Vec model. |
|
|
|
Args: |
|
self: The instance of the model. |
|
input_values: The input values (waveform) to the model. |
|
seq_len: The sequence length of the input values. |
|
attention_mask: Attention mask to be used for the model. |
|
mask_time_indices: Mask indices to be used for the model. |
|
output_attentions: If set to True, returns attentions. |
|
output_hidden_states: If set to True, returns hidden states. |
|
return_dict: If set to True, returns a BaseModelOutput instead of a tuple. |
|
|
|
Returns: |
|
The output of the Wav2Vec model. |
|
""" |
|
self.config.output_attentions = True |
|
|
|
output_hidden_states = ( |
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states |
|
) |
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
extract_features = self.feature_extractor(input_values) |
|
extract_features = extract_features.transpose(1, 2) |
|
extract_features = linear_interpolation(extract_features, seq_len=seq_len) |
|
|
|
if attention_mask is not None: |
|
|
|
attention_mask = self._get_feature_vector_attention_mask( |
|
extract_features.shape[1], attention_mask, add_adapter=False |
|
) |
|
|
|
hidden_states, extract_features = self.feature_projection(extract_features) |
|
hidden_states = self._mask_hidden_states( |
|
hidden_states, mask_time_indices=mask_time_indices, attention_mask=attention_mask |
|
) |
|
|
|
encoder_outputs = self.encoder( |
|
hidden_states, |
|
attention_mask=attention_mask, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
) |
|
|
|
hidden_states = encoder_outputs[0] |
|
|
|
if self.adapter is not None: |
|
hidden_states = self.adapter(hidden_states) |
|
|
|
if not return_dict: |
|
return (hidden_states, ) + encoder_outputs[1:] |
|
return BaseModelOutput( |
|
last_hidden_state=hidden_states, |
|
hidden_states=encoder_outputs.hidden_states, |
|
attentions=encoder_outputs.attentions, |
|
) |
|
|
|
|
|
def feature_extract( |
|
self, |
|
input_values, |
|
seq_len, |
|
): |
|
""" |
|
Extracts features from the input values and returns the extracted features. |
|
|
|
Parameters: |
|
input_values (torch.Tensor): The input values to be processed. |
|
seq_len (torch.Tensor): The sequence lengths of the input values. |
|
|
|
Returns: |
|
extracted_features (torch.Tensor): The extracted features from the input values. |
|
""" |
|
extract_features = self.feature_extractor(input_values) |
|
extract_features = extract_features.transpose(1, 2) |
|
extract_features = linear_interpolation(extract_features, seq_len=seq_len) |
|
|
|
return extract_features |
|
|
|
def encode( |
|
self, |
|
extract_features, |
|
attention_mask=None, |
|
mask_time_indices=None, |
|
output_attentions=None, |
|
output_hidden_states=None, |
|
return_dict=None, |
|
): |
|
""" |
|
Encodes the input features into the output space. |
|
|
|
Args: |
|
extract_features (torch.Tensor): The extracted features from the audio signal. |
|
attention_mask (torch.Tensor, optional): Attention mask to be used for padding. |
|
mask_time_indices (torch.Tensor, optional): Masked indices for the time dimension. |
|
output_attentions (bool, optional): If set to True, returns the attention weights. |
|
output_hidden_states (bool, optional): If set to True, returns all hidden states. |
|
return_dict (bool, optional): If set to True, returns a BaseModelOutput instead of the tuple. |
|
|
|
Returns: |
|
The encoded output features. |
|
""" |
|
self.config.output_attentions = True |
|
|
|
output_hidden_states = ( |
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states |
|
) |
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
if attention_mask is not None: |
|
|
|
attention_mask = self._get_feature_vector_attention_mask( |
|
extract_features.shape[1], attention_mask, add_adapter=False |
|
) |
|
|
|
hidden_states, extract_features = self.feature_projection(extract_features) |
|
hidden_states = self._mask_hidden_states( |
|
hidden_states, mask_time_indices=mask_time_indices, attention_mask=attention_mask |
|
) |
|
|
|
encoder_outputs = self.encoder( |
|
hidden_states, |
|
attention_mask=attention_mask, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
) |
|
|
|
hidden_states = encoder_outputs[0] |
|
|
|
if self.adapter is not None: |
|
hidden_states = self.adapter(hidden_states) |
|
|
|
if not return_dict: |
|
return (hidden_states, ) + encoder_outputs[1:] |
|
return BaseModelOutput( |
|
last_hidden_state=hidden_states, |
|
hidden_states=encoder_outputs.hidden_states, |
|
attentions=encoder_outputs.attentions, |
|
) |
|
|
|
|
|
def linear_interpolation(features, seq_len): |
|
""" |
|
Transpose the features to interpolate linearly. |
|
|
|
Args: |
|
features (torch.Tensor): The extracted features to be interpolated. |
|
seq_len (torch.Tensor): The sequence lengths of the features. |
|
|
|
Returns: |
|
torch.Tensor: The interpolated features. |
|
""" |
|
features = features.transpose(1, 2) |
|
output_features = F.interpolate(features, size=seq_len, align_corners=True, mode='linear') |
|
return output_features.transpose(1, 2) |
|
|