|
|
|
|
|
|
|
|
|
""" |
|
This module implements the `UNet2DConditionModel`, |
|
a variant of the 2D U-Net architecture designed for conditional image generation tasks. |
|
The model is capable of taking a noisy input sample and conditioning it based on additional information such as class labels, |
|
time steps, and encoder hidden states to produce a denoised output. |
|
|
|
The `UNet2DConditionModel` leverages various components such as time embeddings, |
|
class embeddings, and cross-attention mechanisms to integrate the conditioning information effectively. |
|
It is built upon several sub-blocks including down-blocks, a middle block, and up-blocks, |
|
each responsible for different stages of the U-Net's downsampling and upsampling process. |
|
|
|
Key Features: |
|
- Support for multiple types of down and up blocks, including those with cross-attention capabilities. |
|
- Flexible configuration of the model's layers, including the number of layers per block and the output channels for each block. |
|
- Integration of time embeddings and class embeddings to condition the model's output on additional information. |
|
- Implementation of cross-attention to leverage encoder hidden states for conditional generation. |
|
- The model supports gradient checkpointing to reduce memory usage during training. |
|
|
|
The module also includes utility functions and classes such as `UNet2DConditionOutput` for structured output |
|
and `load_change_cross_attention_dim` for loading and modifying pre-trained models. |
|
|
|
Example Usage: |
|
>>> import torch |
|
>>> from unet_2d_condition_model import UNet2DConditionModel |
|
>>> model = UNet2DConditionModel( |
|
... sample_size=(64, 64), |
|
... in_channels=3, |
|
... out_channels=3, |
|
... encoder_hid_dim=512, |
|
... cross_attention_dim=1024, |
|
... ) |
|
>>> # Prepare input tensors |
|
>>> sample = torch.randn(1, 3, 64, 64) |
|
>>> timestep = 0 |
|
>>> encoder_hidden_states = torch.randn(1, 14, 512) |
|
>>> # Forward pass through the model |
|
>>> output = model(sample, timestep, encoder_hidden_states) |
|
|
|
This module is part of a larger ecosystem of diffusion models and can be used for various conditional image generation tasks. |
|
""" |
|
|
|
from dataclasses import dataclass |
|
from os import PathLike |
|
from pathlib import Path |
|
from typing import Any, Dict, List, Optional, Tuple, Union |
|
|
|
import torch |
|
import torch.utils.checkpoint |
|
from diffusers.configuration_utils import ConfigMixin, register_to_config |
|
from diffusers.loaders import UNet2DConditionLoadersMixin |
|
from diffusers.models.activations import get_activation |
|
from diffusers.models.attention_processor import ( |
|
ADDED_KV_ATTENTION_PROCESSORS, CROSS_ATTENTION_PROCESSORS, |
|
AttentionProcessor, AttnAddedKVProcessor, AttnProcessor) |
|
from diffusers.models.embeddings import (GaussianFourierProjection, |
|
GLIGENTextBoundingboxProjection, |
|
ImageHintTimeEmbedding, |
|
ImageProjection, ImageTimeEmbedding, |
|
TextImageProjection, |
|
TextImageTimeEmbedding, |
|
TextTimeEmbedding, TimestepEmbedding, |
|
Timesteps) |
|
from diffusers.models.modeling_utils import ModelMixin |
|
from diffusers.utils import (SAFETENSORS_WEIGHTS_NAME, USE_PEFT_BACKEND, |
|
WEIGHTS_NAME, BaseOutput, deprecate, logging, |
|
scale_lora_layers, unscale_lora_layers) |
|
from safetensors.torch import load_file |
|
from torch import nn |
|
|
|
from .unet_2d_blocks import (UNetMidBlock2D, UNetMidBlock2DCrossAttn, |
|
get_down_block, get_up_block) |
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
@dataclass |
|
class UNet2DConditionOutput(BaseOutput): |
|
""" |
|
The output of [`UNet2DConditionModel`]. |
|
|
|
Args: |
|
sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): |
|
The hidden states output conditioned on `encoder_hidden_states` input. Output of last layer of model. |
|
""" |
|
|
|
sample: torch.FloatTensor = None |
|
ref_features: Tuple[torch.FloatTensor] = None |
|
|
|
|
|
class UNet2DConditionModel(ModelMixin, ConfigMixin, UNet2DConditionLoadersMixin): |
|
r""" |
|
A conditional 2D UNet model that takes a noisy sample, conditional state, and a timestep and returns a sample |
|
shaped output. |
|
|
|
This model inherits from [`ModelMixin`]. Check the superclass documentation for it's generic methods implemented |
|
for all models (such as downloading or saving). |
|
|
|
Parameters: |
|
sample_size (`int` or `Tuple[int, int]`, *optional*, defaults to `None`): |
|
Height and width of input/output sample. |
|
in_channels (`int`, *optional*, defaults to 4): Number of channels in the input sample. |
|
out_channels (`int`, *optional*, defaults to 4): Number of channels in the output. |
|
center_input_sample (`bool`, *optional*, defaults to `False`): Whether to center the input sample. |
|
flip_sin_to_cos (`bool`, *optional*, defaults to `False`): |
|
Whether to flip the sin to cos in the time embedding. |
|
freq_shift (`int`, *optional*, defaults to 0): The frequency shift to apply to the time embedding. |
|
down_block_types (`Tuple[str]`, *optional*, defaults to |
|
`("CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "DownBlock2D")`): |
|
The tuple of downsample blocks to use. |
|
mid_block_type (`str`, *optional*, defaults to `"UNetMidBlock2DCrossAttn"`): |
|
Block type for middle of UNet, it can be one of `UNetMidBlock2DCrossAttn`, `UNetMidBlock2D`, or |
|
`UNetMidBlock2DSimpleCrossAttn`. If `None`, the mid block layer is skipped. |
|
up_block_types (`Tuple[str]`, *optional*, defaults to `("UpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D")`): |
|
The tuple of upsample blocks to use. |
|
only_cross_attention(`bool` or `Tuple[bool]`, *optional*, default to `False`): |
|
Whether to include self-attention in the basic transformer blocks, see |
|
[`~models.attention.BasicTransformerBlock`]. |
|
block_out_channels (`Tuple[int]`, *optional*, defaults to `(320, 640, 1280, 1280)`): |
|
The tuple of output channels for each block. |
|
layers_per_block (`int`, *optional*, defaults to 2): The number of layers per block. |
|
downsample_padding (`int`, *optional*, defaults to 1): The padding to use for the downsampling convolution. |
|
mid_block_scale_factor (`float`, *optional*, defaults to 1.0): The scale factor to use for the mid block. |
|
dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use. |
|
act_fn (`str`, *optional*, defaults to `"silu"`): The activation function to use. |
|
norm_num_groups (`int`, *optional*, defaults to 32): The number of groups to use for the normalization. |
|
If `None`, normalization and activation layers is skipped in post-processing. |
|
norm_eps (`float`, *optional*, defaults to 1e-5): The epsilon to use for the normalization. |
|
cross_attention_dim (`int` or `Tuple[int]`, *optional*, defaults to 1280): |
|
The dimension of the cross attention features. |
|
transformer_layers_per_block (`int`, `Tuple[int]`, or `Tuple[Tuple]` , *optional*, defaults to 1): |
|
The number of transformer blocks of type [`~models.attention.BasicTransformerBlock`]. Only relevant for |
|
[`~models.unet_2d_blocks.CrossAttnDownBlock2D`], [`~models.unet_2d_blocks.CrossAttnUpBlock2D`], |
|
[`~models.unet_2d_blocks.UNetMidBlock2DCrossAttn`]. |
|
reverse_transformer_layers_per_block : (`Tuple[Tuple]`, *optional*, defaults to None): |
|
The number of transformer blocks of type [`~models.attention.BasicTransformerBlock`], in the upsampling |
|
blocks of the U-Net. Only relevant if `transformer_layers_per_block` is of type `Tuple[Tuple]` and for |
|
[`~models.unet_2d_blocks.CrossAttnDownBlock2D`], [`~models.unet_2d_blocks.CrossAttnUpBlock2D`], |
|
[`~models.unet_2d_blocks.UNetMidBlock2DCrossAttn`]. |
|
encoder_hid_dim (`int`, *optional*, defaults to None): |
|
If `encoder_hid_dim_type` is defined, `encoder_hidden_states` will be projected from `encoder_hid_dim` |
|
dimension to `cross_attention_dim`. |
|
encoder_hid_dim_type (`str`, *optional*, defaults to `None`): |
|
If given, the `encoder_hidden_states` and potentially other embeddings are down-projected to text |
|
embeddings of dimension `cross_attention` according to `encoder_hid_dim_type`. |
|
attention_head_dim (`int`, *optional*, defaults to 8): The dimension of the attention heads. |
|
num_attention_heads (`int`, *optional*): |
|
The number of attention heads. If not defined, defaults to `attention_head_dim` |
|
resnet_time_scale_shift (`str`, *optional*, defaults to `"default"`): Time scale shift config |
|
for ResNet blocks (see [`~models.resnet.ResnetBlock2D`]). Choose from `default` or `scale_shift`. |
|
class_embed_type (`str`, *optional*, defaults to `None`): |
|
The type of class embedding to use which is ultimately summed with the time embeddings. Choose from `None`, |
|
`"timestep"`, `"identity"`, `"projection"`, or `"simple_projection"`. |
|
addition_embed_type (`str`, *optional*, defaults to `None`): |
|
Configures an optional embedding which will be summed with the time embeddings. Choose from `None` or |
|
"text". "text" will use the `TextTimeEmbedding` layer. |
|
addition_time_embed_dim: (`int`, *optional*, defaults to `None`): |
|
Dimension for the timestep embeddings. |
|
num_class_embeds (`int`, *optional*, defaults to `None`): |
|
Input dimension of the learnable embedding matrix to be projected to `time_embed_dim`, when performing |
|
class conditioning with `class_embed_type` equal to `None`. |
|
time_embedding_type (`str`, *optional*, defaults to `positional`): |
|
The type of position embedding to use for timesteps. Choose from `positional` or `fourier`. |
|
time_embedding_dim (`int`, *optional*, defaults to `None`): |
|
An optional override for the dimension of the projected time embedding. |
|
time_embedding_act_fn (`str`, *optional*, defaults to `None`): |
|
Optional activation function to use only once on the time embeddings before they are passed to the rest of |
|
the UNet. Choose from `silu`, `mish`, `gelu`, and `swish`. |
|
timestep_post_act (`str`, *optional*, defaults to `None`): |
|
The second activation function to use in timestep embedding. Choose from `silu`, `mish` and `gelu`. |
|
time_cond_proj_dim (`int`, *optional*, defaults to `None`): |
|
The dimension of `cond_proj` layer in the timestep embedding. |
|
conv_in_kernel (`int`, *optional*, default to `3`): The kernel size of `conv_in` layer. conv_out_kernel (`int`, |
|
*optional*, default to `3`): The kernel size of `conv_out` layer. projection_class_embeddings_input_dim (`int`, |
|
*optional*): The dimension of the `class_labels` input when |
|
`class_embed_type="projection"`. Required when `class_embed_type="projection"`. |
|
class_embeddings_concat (`bool`, *optional*, defaults to `False`): Whether to concatenate the time |
|
embeddings with the class embeddings. |
|
mid_block_only_cross_attention (`bool`, *optional*, defaults to `None`): |
|
Whether to use cross attention with the mid block when using the `UNetMidBlock2DSimpleCrossAttn`. If |
|
`only_cross_attention` is given as a single boolean and `mid_block_only_cross_attention` is `None`, the |
|
`only_cross_attention` value is used as the value for `mid_block_only_cross_attention`. Default to `False` |
|
otherwise. |
|
""" |
|
|
|
_supports_gradient_checkpointing = True |
|
|
|
@register_to_config |
|
def __init__( |
|
self, |
|
sample_size: Optional[int] = None, |
|
in_channels: int = 4, |
|
_out_channels: int = 4, |
|
_center_input_sample: bool = False, |
|
flip_sin_to_cos: bool = True, |
|
freq_shift: int = 0, |
|
down_block_types: Tuple[str] = ( |
|
"CrossAttnDownBlock2D", |
|
"CrossAttnDownBlock2D", |
|
"CrossAttnDownBlock2D", |
|
"DownBlock2D", |
|
), |
|
mid_block_type: Optional[str] = "UNetMidBlock2DCrossAttn", |
|
up_block_types: Tuple[str] = ( |
|
"UpBlock2D", |
|
"CrossAttnUpBlock2D", |
|
"CrossAttnUpBlock2D", |
|
"CrossAttnUpBlock2D", |
|
), |
|
only_cross_attention: Union[bool, Tuple[bool]] = False, |
|
block_out_channels: Tuple[int] = (320, 640, 1280, 1280), |
|
layers_per_block: Union[int, Tuple[int]] = 2, |
|
downsample_padding: int = 1, |
|
mid_block_scale_factor: float = 1, |
|
dropout: float = 0.0, |
|
act_fn: str = "silu", |
|
norm_num_groups: Optional[int] = 32, |
|
norm_eps: float = 1e-5, |
|
cross_attention_dim: Union[int, Tuple[int]] = 1280, |
|
transformer_layers_per_block: Union[int, Tuple[int], Tuple[Tuple]] = 1, |
|
reverse_transformer_layers_per_block: Optional[Tuple[Tuple[int]]] = None, |
|
encoder_hid_dim: Optional[int] = None, |
|
encoder_hid_dim_type: Optional[str] = None, |
|
attention_head_dim: Union[int, Tuple[int]] = 8, |
|
num_attention_heads: Optional[Union[int, Tuple[int]]] = None, |
|
dual_cross_attention: bool = False, |
|
use_linear_projection: bool = False, |
|
class_embed_type: Optional[str] = None, |
|
addition_embed_type: Optional[str] = None, |
|
addition_time_embed_dim: Optional[int] = None, |
|
num_class_embeds: Optional[int] = None, |
|
upcast_attention: bool = False, |
|
resnet_time_scale_shift: str = "default", |
|
time_embedding_type: str = "positional", |
|
time_embedding_dim: Optional[int] = None, |
|
time_embedding_act_fn: Optional[str] = None, |
|
timestep_post_act: Optional[str] = None, |
|
time_cond_proj_dim: Optional[int] = None, |
|
conv_in_kernel: int = 3, |
|
projection_class_embeddings_input_dim: Optional[int] = None, |
|
attention_type: str = "default", |
|
class_embeddings_concat: bool = False, |
|
mid_block_only_cross_attention: Optional[bool] = None, |
|
addition_embed_type_num_heads=64, |
|
_landmark_net=False, |
|
): |
|
super().__init__() |
|
|
|
self.sample_size = sample_size |
|
|
|
if num_attention_heads is not None: |
|
raise ValueError( |
|
"At the moment it is not possible to define the number of attention heads via `num_attention_heads`" |
|
"because of a naming issue as described in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131." |
|
"Passing `num_attention_heads` will only be supported in diffusers v0.19." |
|
) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
num_attention_heads = num_attention_heads or attention_head_dim |
|
|
|
|
|
if len(down_block_types) != len(up_block_types): |
|
raise ValueError( |
|
"Must provide the same number of `down_block_types` as `up_block_types`." |
|
f"`down_block_types`: {down_block_types}. `up_block_types`: {up_block_types}." |
|
) |
|
|
|
if len(block_out_channels) != len(down_block_types): |
|
raise ValueError( |
|
"Must provide the same number of `block_out_channels` as `down_block_types`." |
|
f"`block_out_channels`: {block_out_channels}. `down_block_types`: {down_block_types}." |
|
) |
|
|
|
if not isinstance(only_cross_attention, bool) and len( |
|
only_cross_attention |
|
) != len(down_block_types): |
|
raise ValueError( |
|
"Must provide the same number of `only_cross_attention` as `down_block_types`." |
|
f"`only_cross_attention`: {only_cross_attention}. `down_block_types`: {down_block_types}." |
|
) |
|
|
|
if not isinstance(num_attention_heads, int) and len(num_attention_heads) != len( |
|
down_block_types |
|
): |
|
raise ValueError( |
|
"Must provide the same number of `num_attention_heads` as `down_block_types`." |
|
f"`num_attention_heads`: {num_attention_heads}. `down_block_types`: {down_block_types}." |
|
) |
|
|
|
if not isinstance(attention_head_dim, int) and len(attention_head_dim) != len( |
|
down_block_types |
|
): |
|
raise ValueError( |
|
"Must provide the same number of `attention_head_dim` as `down_block_types`." |
|
f"`attention_head_dim`: {attention_head_dim}. `down_block_types`: {down_block_types}." |
|
) |
|
|
|
if isinstance(cross_attention_dim, list) and len(cross_attention_dim) != len( |
|
down_block_types |
|
): |
|
raise ValueError( |
|
"Must provide the same number of `cross_attention_dim` as `down_block_types`." |
|
f"`cross_attention_dim`: {cross_attention_dim}. `down_block_types`: {down_block_types}." |
|
) |
|
|
|
if not isinstance(layers_per_block, int) and len(layers_per_block) != len( |
|
down_block_types |
|
): |
|
raise ValueError( |
|
"Must provide the same number of `layers_per_block` as `down_block_types`." |
|
f"`layers_per_block`: {layers_per_block}. `down_block_types`: {down_block_types}." |
|
) |
|
if ( |
|
isinstance(transformer_layers_per_block, list) |
|
and reverse_transformer_layers_per_block is None |
|
): |
|
for layer_number_per_block in transformer_layers_per_block: |
|
if isinstance(layer_number_per_block, list): |
|
raise ValueError( |
|
"Must provide 'reverse_transformer_layers_per_block` if using asymmetrical UNet." |
|
) |
|
|
|
|
|
conv_in_padding = (conv_in_kernel - 1) // 2 |
|
self.conv_in = nn.Conv2d( |
|
in_channels, |
|
block_out_channels[0], |
|
kernel_size=conv_in_kernel, |
|
padding=conv_in_padding, |
|
) |
|
|
|
|
|
if time_embedding_type == "fourier": |
|
time_embed_dim = time_embedding_dim or block_out_channels[0] * 2 |
|
if time_embed_dim % 2 != 0: |
|
raise ValueError( |
|
f"`time_embed_dim` should be divisible by 2, but is {time_embed_dim}." |
|
) |
|
self.time_proj = GaussianFourierProjection( |
|
time_embed_dim // 2, |
|
set_W_to_weight=False, |
|
log=False, |
|
flip_sin_to_cos=flip_sin_to_cos, |
|
) |
|
timestep_input_dim = time_embed_dim |
|
elif time_embedding_type == "positional": |
|
time_embed_dim = time_embedding_dim or block_out_channels[0] * 4 |
|
|
|
self.time_proj = Timesteps( |
|
block_out_channels[0], flip_sin_to_cos, freq_shift |
|
) |
|
timestep_input_dim = block_out_channels[0] |
|
else: |
|
raise ValueError( |
|
f"{time_embedding_type} does not exist. Please make sure to use one of `fourier` or `positional`." |
|
) |
|
|
|
self.time_embedding = TimestepEmbedding( |
|
timestep_input_dim, |
|
time_embed_dim, |
|
act_fn=act_fn, |
|
post_act_fn=timestep_post_act, |
|
cond_proj_dim=time_cond_proj_dim, |
|
) |
|
|
|
if encoder_hid_dim_type is None and encoder_hid_dim is not None: |
|
encoder_hid_dim_type = "text_proj" |
|
self.register_to_config(encoder_hid_dim_type=encoder_hid_dim_type) |
|
logger.info( |
|
"encoder_hid_dim_type defaults to 'text_proj' as `encoder_hid_dim` is defined." |
|
) |
|
|
|
if encoder_hid_dim is None and encoder_hid_dim_type is not None: |
|
raise ValueError( |
|
f"`encoder_hid_dim` has to be defined when `encoder_hid_dim_type` is set to {encoder_hid_dim_type}." |
|
) |
|
|
|
if encoder_hid_dim_type == "text_proj": |
|
self.encoder_hid_proj = nn.Linear( |
|
encoder_hid_dim, cross_attention_dim) |
|
elif encoder_hid_dim_type == "text_image_proj": |
|
|
|
|
|
|
|
self.encoder_hid_proj = TextImageProjection( |
|
text_embed_dim=encoder_hid_dim, |
|
image_embed_dim=cross_attention_dim, |
|
cross_attention_dim=cross_attention_dim, |
|
) |
|
elif encoder_hid_dim_type == "image_proj": |
|
|
|
self.encoder_hid_proj = ImageProjection( |
|
image_embed_dim=encoder_hid_dim, |
|
cross_attention_dim=cross_attention_dim, |
|
) |
|
elif encoder_hid_dim_type is not None: |
|
raise ValueError( |
|
f"encoder_hid_dim_type: {encoder_hid_dim_type} must be None, 'text_proj' or 'text_image_proj'." |
|
) |
|
else: |
|
self.encoder_hid_proj = None |
|
|
|
|
|
if class_embed_type is None and num_class_embeds is not None: |
|
self.class_embedding = nn.Embedding( |
|
num_class_embeds, time_embed_dim) |
|
elif class_embed_type == "timestep": |
|
self.class_embedding = TimestepEmbedding( |
|
timestep_input_dim, time_embed_dim, act_fn=act_fn |
|
) |
|
elif class_embed_type == "identity": |
|
self.class_embedding = nn.Identity(time_embed_dim, time_embed_dim) |
|
elif class_embed_type == "projection": |
|
if projection_class_embeddings_input_dim is None: |
|
raise ValueError( |
|
"`class_embed_type`: 'projection' requires `projection_class_embeddings_input_dim` be set" |
|
) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
self.class_embedding = TimestepEmbedding( |
|
projection_class_embeddings_input_dim, time_embed_dim |
|
) |
|
elif class_embed_type == "simple_projection": |
|
if projection_class_embeddings_input_dim is None: |
|
raise ValueError( |
|
"`class_embed_type`: 'simple_projection' requires `projection_class_embeddings_input_dim` be set" |
|
) |
|
self.class_embedding = nn.Linear( |
|
projection_class_embeddings_input_dim, time_embed_dim |
|
) |
|
else: |
|
self.class_embedding = None |
|
|
|
if addition_embed_type == "text": |
|
if encoder_hid_dim is not None: |
|
text_time_embedding_from_dim = encoder_hid_dim |
|
else: |
|
text_time_embedding_from_dim = cross_attention_dim |
|
|
|
self.add_embedding = TextTimeEmbedding( |
|
text_time_embedding_from_dim, |
|
time_embed_dim, |
|
num_heads=addition_embed_type_num_heads, |
|
) |
|
elif addition_embed_type == "text_image": |
|
|
|
|
|
|
|
self.add_embedding = TextImageTimeEmbedding( |
|
text_embed_dim=cross_attention_dim, |
|
image_embed_dim=cross_attention_dim, |
|
time_embed_dim=time_embed_dim, |
|
) |
|
elif addition_embed_type == "text_time": |
|
self.add_time_proj = Timesteps( |
|
addition_time_embed_dim, flip_sin_to_cos, freq_shift |
|
) |
|
self.add_embedding = TimestepEmbedding( |
|
projection_class_embeddings_input_dim, time_embed_dim |
|
) |
|
elif addition_embed_type == "image": |
|
|
|
self.add_embedding = ImageTimeEmbedding( |
|
image_embed_dim=encoder_hid_dim, time_embed_dim=time_embed_dim |
|
) |
|
elif addition_embed_type == "image_hint": |
|
|
|
self.add_embedding = ImageHintTimeEmbedding( |
|
image_embed_dim=encoder_hid_dim, time_embed_dim=time_embed_dim |
|
) |
|
elif addition_embed_type is not None: |
|
raise ValueError( |
|
f"addition_embed_type: {addition_embed_type} must be None, 'text' or 'text_image'." |
|
) |
|
|
|
if time_embedding_act_fn is None: |
|
self.time_embed_act = None |
|
else: |
|
self.time_embed_act = get_activation(time_embedding_act_fn) |
|
|
|
self.down_blocks = nn.ModuleList([]) |
|
self.up_blocks = nn.ModuleList([]) |
|
|
|
if isinstance(only_cross_attention, bool): |
|
if mid_block_only_cross_attention is None: |
|
mid_block_only_cross_attention = only_cross_attention |
|
|
|
only_cross_attention = [ |
|
only_cross_attention] * len(down_block_types) |
|
|
|
if mid_block_only_cross_attention is None: |
|
mid_block_only_cross_attention = False |
|
|
|
if isinstance(num_attention_heads, int): |
|
num_attention_heads = (num_attention_heads,) * \ |
|
len(down_block_types) |
|
|
|
if isinstance(attention_head_dim, int): |
|
attention_head_dim = (attention_head_dim,) * len(down_block_types) |
|
|
|
if isinstance(cross_attention_dim, int): |
|
cross_attention_dim = (cross_attention_dim,) * \ |
|
len(down_block_types) |
|
|
|
if isinstance(layers_per_block, int): |
|
layers_per_block = [layers_per_block] * len(down_block_types) |
|
|
|
if isinstance(transformer_layers_per_block, int): |
|
transformer_layers_per_block = [transformer_layers_per_block] * len( |
|
down_block_types |
|
) |
|
|
|
if class_embeddings_concat: |
|
|
|
|
|
|
|
blocks_time_embed_dim = time_embed_dim * 2 |
|
else: |
|
blocks_time_embed_dim = time_embed_dim |
|
|
|
|
|
output_channel = block_out_channels[0] |
|
for i, down_block_type in enumerate(down_block_types): |
|
input_channel = output_channel |
|
output_channel = block_out_channels[i] |
|
is_final_block = i == len(block_out_channels) - 1 |
|
|
|
down_block = get_down_block( |
|
down_block_type, |
|
num_layers=layers_per_block[i], |
|
transformer_layers_per_block=transformer_layers_per_block[i], |
|
in_channels=input_channel, |
|
out_channels=output_channel, |
|
temb_channels=blocks_time_embed_dim, |
|
add_downsample=not is_final_block, |
|
resnet_eps=norm_eps, |
|
resnet_act_fn=act_fn, |
|
resnet_groups=norm_num_groups, |
|
cross_attention_dim=cross_attention_dim[i], |
|
num_attention_heads=num_attention_heads[i], |
|
downsample_padding=downsample_padding, |
|
dual_cross_attention=dual_cross_attention, |
|
use_linear_projection=use_linear_projection, |
|
only_cross_attention=only_cross_attention[i], |
|
upcast_attention=upcast_attention, |
|
resnet_time_scale_shift=resnet_time_scale_shift, |
|
attention_type=attention_type, |
|
attention_head_dim=( |
|
attention_head_dim[i] |
|
if attention_head_dim[i] is not None |
|
else output_channel |
|
), |
|
dropout=dropout, |
|
) |
|
self.down_blocks.append(down_block) |
|
|
|
|
|
if mid_block_type == "UNetMidBlock2DCrossAttn": |
|
self.mid_block = UNetMidBlock2DCrossAttn( |
|
transformer_layers_per_block=transformer_layers_per_block[-1], |
|
in_channels=block_out_channels[-1], |
|
temb_channels=blocks_time_embed_dim, |
|
dropout=dropout, |
|
resnet_eps=norm_eps, |
|
resnet_act_fn=act_fn, |
|
output_scale_factor=mid_block_scale_factor, |
|
resnet_time_scale_shift=resnet_time_scale_shift, |
|
cross_attention_dim=cross_attention_dim[-1], |
|
num_attention_heads=num_attention_heads[-1], |
|
resnet_groups=norm_num_groups, |
|
dual_cross_attention=dual_cross_attention, |
|
use_linear_projection=use_linear_projection, |
|
upcast_attention=upcast_attention, |
|
attention_type=attention_type, |
|
) |
|
elif mid_block_type == "UNetMidBlock2DSimpleCrossAttn": |
|
raise NotImplementedError( |
|
f"Unsupport mid_block_type: {mid_block_type}") |
|
elif mid_block_type == "UNetMidBlock2D": |
|
self.mid_block = UNetMidBlock2D( |
|
in_channels=block_out_channels[-1], |
|
temb_channels=blocks_time_embed_dim, |
|
dropout=dropout, |
|
num_layers=0, |
|
resnet_eps=norm_eps, |
|
resnet_act_fn=act_fn, |
|
output_scale_factor=mid_block_scale_factor, |
|
resnet_groups=norm_num_groups, |
|
resnet_time_scale_shift=resnet_time_scale_shift, |
|
add_attention=False, |
|
) |
|
elif mid_block_type is None: |
|
self.mid_block = None |
|
else: |
|
raise ValueError(f"unknown mid_block_type : {mid_block_type}") |
|
|
|
|
|
self.num_upsamplers = 0 |
|
|
|
|
|
reversed_block_out_channels = list(reversed(block_out_channels)) |
|
reversed_num_attention_heads = list(reversed(num_attention_heads)) |
|
reversed_layers_per_block = list(reversed(layers_per_block)) |
|
reversed_cross_attention_dim = list(reversed(cross_attention_dim)) |
|
reversed_transformer_layers_per_block = ( |
|
list(reversed(transformer_layers_per_block)) |
|
if reverse_transformer_layers_per_block is None |
|
else reverse_transformer_layers_per_block |
|
) |
|
only_cross_attention = list(reversed(only_cross_attention)) |
|
|
|
output_channel = reversed_block_out_channels[0] |
|
for i, up_block_type in enumerate(up_block_types): |
|
is_final_block = i == len(block_out_channels) - 1 |
|
|
|
prev_output_channel = output_channel |
|
output_channel = reversed_block_out_channels[i] |
|
input_channel = reversed_block_out_channels[ |
|
min(i + 1, len(block_out_channels) - 1) |
|
] |
|
|
|
|
|
if not is_final_block: |
|
add_upsample = True |
|
self.num_upsamplers += 1 |
|
else: |
|
add_upsample = False |
|
|
|
up_block = get_up_block( |
|
up_block_type, |
|
num_layers=reversed_layers_per_block[i] + 1, |
|
transformer_layers_per_block=reversed_transformer_layers_per_block[i], |
|
in_channels=input_channel, |
|
out_channels=output_channel, |
|
prev_output_channel=prev_output_channel, |
|
temb_channels=blocks_time_embed_dim, |
|
add_upsample=add_upsample, |
|
resnet_eps=norm_eps, |
|
resnet_act_fn=act_fn, |
|
resolution_idx=i, |
|
resnet_groups=norm_num_groups, |
|
cross_attention_dim=reversed_cross_attention_dim[i], |
|
num_attention_heads=reversed_num_attention_heads[i], |
|
dual_cross_attention=dual_cross_attention, |
|
use_linear_projection=use_linear_projection, |
|
only_cross_attention=only_cross_attention[i], |
|
upcast_attention=upcast_attention, |
|
resnet_time_scale_shift=resnet_time_scale_shift, |
|
attention_type=attention_type, |
|
attention_head_dim=( |
|
attention_head_dim[i] |
|
if attention_head_dim[i] is not None |
|
else output_channel |
|
), |
|
dropout=dropout, |
|
) |
|
self.up_blocks.append(up_block) |
|
prev_output_channel = output_channel |
|
|
|
|
|
if norm_num_groups is not None: |
|
self.conv_norm_out = nn.GroupNorm( |
|
num_channels=block_out_channels[0], |
|
num_groups=norm_num_groups, |
|
eps=norm_eps, |
|
) |
|
|
|
self.conv_act = get_activation(act_fn) |
|
|
|
else: |
|
self.conv_norm_out = None |
|
self.conv_act = None |
|
self.conv_norm_out = None |
|
|
|
if attention_type in ["gated", "gated-text-image"]: |
|
positive_len = 768 |
|
if isinstance(cross_attention_dim, int): |
|
positive_len = cross_attention_dim |
|
elif isinstance(cross_attention_dim, (tuple, list)): |
|
positive_len = cross_attention_dim[0] |
|
|
|
feature_type = "text-only" if attention_type == "gated" else "text-image" |
|
self.position_net = GLIGENTextBoundingboxProjection( |
|
positive_len=positive_len, |
|
out_dim=cross_attention_dim, |
|
feature_type=feature_type, |
|
) |
|
|
|
@property |
|
def attn_processors(self) -> Dict[str, AttentionProcessor]: |
|
r""" |
|
Returns: |
|
`dict` of attention processors: A dictionary containing all attention processors used in the model with |
|
indexed by its weight name. |
|
""" |
|
|
|
processors = {} |
|
|
|
def fn_recursive_add_processors( |
|
name: str, |
|
module: torch.nn.Module, |
|
processors: Dict[str, AttentionProcessor], |
|
): |
|
if hasattr(module, "get_processor"): |
|
processors[f"{name}.processor"] = module.get_processor( |
|
return_deprecated_lora=True |
|
) |
|
|
|
for sub_name, child in module.named_children(): |
|
fn_recursive_add_processors( |
|
f"{name}.{sub_name}", child, processors) |
|
|
|
return processors |
|
|
|
for name, module in self.named_children(): |
|
fn_recursive_add_processors(name, module, processors) |
|
|
|
return processors |
|
|
|
def set_attn_processor( |
|
self, |
|
processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]], |
|
_remove_lora=False, |
|
): |
|
r""" |
|
Sets the attention processor to use to compute attention. |
|
|
|
Parameters: |
|
processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`): |
|
The instantiated processor class or a dictionary of processor classes that will be set as the processor |
|
for **all** `Attention` layers. |
|
|
|
If `processor` is a dict, the key needs to define the path to the corresponding cross attention |
|
processor. This is strongly recommended when setting trainable attention processors. |
|
|
|
""" |
|
count = len(self.attn_processors.keys()) |
|
|
|
if isinstance(processor, dict) and len(processor) != count: |
|
raise ValueError( |
|
f"A dict of processors was passed, but the number of processors {len(processor)} does not match the" |
|
f" number of attention layers: {count}. Please make sure to pass {count} processor classes." |
|
) |
|
|
|
def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor): |
|
if hasattr(module, "set_processor"): |
|
if not isinstance(processor, dict): |
|
module.set_processor(processor, _remove_lora=_remove_lora) |
|
else: |
|
module.set_processor( |
|
processor.pop(f"{name}.processor"), _remove_lora=_remove_lora |
|
) |
|
|
|
for sub_name, child in module.named_children(): |
|
fn_recursive_attn_processor( |
|
f"{name}.{sub_name}", child, processor) |
|
|
|
for name, module in self.named_children(): |
|
fn_recursive_attn_processor(name, module, processor) |
|
|
|
def set_default_attn_processor(self): |
|
""" |
|
Disables custom attention processors and sets the default attention implementation. |
|
""" |
|
if all( |
|
proc.__class__ in ADDED_KV_ATTENTION_PROCESSORS |
|
for proc in self.attn_processors.values() |
|
): |
|
processor = AttnAddedKVProcessor() |
|
elif all( |
|
proc.__class__ in CROSS_ATTENTION_PROCESSORS |
|
for proc in self.attn_processors.values() |
|
): |
|
processor = AttnProcessor() |
|
else: |
|
raise ValueError( |
|
f"Cannot call `set_default_attn_processor` when attention processors are of type {next(iter(self.attn_processors.values()))}" |
|
) |
|
|
|
self.set_attn_processor(processor, _remove_lora=True) |
|
|
|
def set_attention_slice(self, slice_size): |
|
r""" |
|
Enable sliced attention computation. |
|
|
|
When this option is enabled, the attention module splits the input tensor in slices to compute attention in |
|
several steps. This is useful for saving some memory in exchange for a small decrease in speed. |
|
|
|
Args: |
|
slice_size (`str` or `int` or `list(int)`, *optional*, defaults to `"auto"`): |
|
When `"auto"`, input to the attention heads is halved, so attention is computed in two steps. If |
|
`"max"`, maximum amount of memory is saved by running only one slice at a time. If a number is |
|
provided, uses as many slices as `attention_head_dim // slice_size`. In this case, `attention_head_dim` |
|
must be a multiple of `slice_size`. |
|
""" |
|
sliceable_head_dims = [] |
|
|
|
def fn_recursive_retrieve_sliceable_dims(module: torch.nn.Module): |
|
if hasattr(module, "set_attention_slice"): |
|
sliceable_head_dims.append(module.sliceable_head_dim) |
|
|
|
for child in module.children(): |
|
fn_recursive_retrieve_sliceable_dims(child) |
|
|
|
|
|
for module in self.children(): |
|
fn_recursive_retrieve_sliceable_dims(module) |
|
|
|
num_sliceable_layers = len(sliceable_head_dims) |
|
|
|
if slice_size == "auto": |
|
|
|
|
|
slice_size = [dim // 2 for dim in sliceable_head_dims] |
|
elif slice_size == "max": |
|
|
|
slice_size = num_sliceable_layers * [1] |
|
|
|
slice_size = ( |
|
num_sliceable_layers * [slice_size] |
|
if not isinstance(slice_size, list) |
|
else slice_size |
|
) |
|
|
|
if len(slice_size) != len(sliceable_head_dims): |
|
raise ValueError( |
|
f"You have provided {len(slice_size)}, but {self.config} has {len(sliceable_head_dims)} different" |
|
f" attention layers. Make sure to match `len(slice_size)` to be {len(sliceable_head_dims)}." |
|
) |
|
|
|
for i, size in enumerate(slice_size): |
|
dim = sliceable_head_dims[i] |
|
if size is not None and size > dim: |
|
raise ValueError( |
|
f"size {size} has to be smaller or equal to {dim}.") |
|
|
|
|
|
|
|
|
|
def fn_recursive_set_attention_slice( |
|
module: torch.nn.Module, slice_size: List[int] |
|
): |
|
if hasattr(module, "set_attention_slice"): |
|
module.set_attention_slice(slice_size.pop()) |
|
|
|
for child in module.children(): |
|
fn_recursive_set_attention_slice(child, slice_size) |
|
|
|
reversed_slice_size = list(reversed(slice_size)) |
|
for module in self.children(): |
|
fn_recursive_set_attention_slice(module, reversed_slice_size) |
|
|
|
def _set_gradient_checkpointing(self, module, value=False): |
|
if hasattr(module, "gradient_checkpointing"): |
|
module.gradient_checkpointing = value |
|
|
|
def enable_freeu(self, s1, s2, b1, b2): |
|
r"""Enables the FreeU mechanism from https://arxiv.org/abs/2309.11497. |
|
|
|
The suffixes after the scaling factors represent the stage blocks where they are being applied. |
|
|
|
Please refer to the [official repository](https://github.com/ChenyangSi/FreeU) for combinations of values that |
|
are known to work well for different pipelines such as Stable Diffusion v1, v2, and Stable Diffusion XL. |
|
|
|
Args: |
|
s1 (`float`): |
|
Scaling factor for stage 1 to attenuate the contributions of the skip features. This is done to |
|
mitigate the "oversmoothing effect" in the enhanced denoising process. |
|
s2 (`float`): |
|
Scaling factor for stage 2 to attenuate the contributions of the skip features. This is done to |
|
mitigate the "oversmoothing effect" in the enhanced denoising process. |
|
b1 (`float`): Scaling factor for stage 1 to amplify the contributions of backbone features. |
|
b2 (`float`): Scaling factor for stage 2 to amplify the contributions of backbone features. |
|
""" |
|
for _, upsample_block in enumerate(self.up_blocks): |
|
setattr(upsample_block, "s1", s1) |
|
setattr(upsample_block, "s2", s2) |
|
setattr(upsample_block, "b1", b1) |
|
setattr(upsample_block, "b2", b2) |
|
|
|
def disable_freeu(self): |
|
"""Disables the FreeU mechanism.""" |
|
freeu_keys = {"s1", "s2", "b1", "b2"} |
|
for _, upsample_block in enumerate(self.up_blocks): |
|
for k in freeu_keys: |
|
if ( |
|
hasattr(upsample_block, k) |
|
or getattr(upsample_block, k, None) is not None |
|
): |
|
setattr(upsample_block, k, None) |
|
|
|
def forward( |
|
self, |
|
sample: torch.FloatTensor, |
|
timestep: Union[torch.Tensor, float, int], |
|
encoder_hidden_states: torch.Tensor, |
|
cond_tensor: torch.FloatTensor=None, |
|
class_labels: Optional[torch.Tensor] = None, |
|
timestep_cond: Optional[torch.Tensor] = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
cross_attention_kwargs: Optional[Dict[str, Any]] = None, |
|
added_cond_kwargs: Optional[Dict[str, torch.Tensor]] = None, |
|
down_block_additional_residuals: Optional[Tuple[torch.Tensor]] = None, |
|
mid_block_additional_residual: Optional[torch.Tensor] = None, |
|
down_intrablock_additional_residuals: Optional[Tuple[torch.Tensor]] = None, |
|
encoder_attention_mask: Optional[torch.Tensor] = None, |
|
return_dict: bool = True, |
|
post_process: bool = False, |
|
) -> Union[UNet2DConditionOutput, Tuple]: |
|
r""" |
|
The [`UNet2DConditionModel`] forward method. |
|
|
|
Args: |
|
sample (`torch.FloatTensor`): |
|
The noisy input tensor with the following shape `(batch, channel, height, width)`. |
|
timestep (`torch.FloatTensor` or `float` or `int`): The number of timesteps to denoise an input. |
|
encoder_hidden_states (`torch.FloatTensor`): |
|
The encoder hidden states with shape `(batch, sequence_length, feature_dim)`. |
|
class_labels (`torch.Tensor`, *optional*, defaults to `None`): |
|
Optional class labels for conditioning. Their embeddings will be summed with the timestep embeddings. |
|
timestep_cond: (`torch.Tensor`, *optional*, defaults to `None`): |
|
Conditional embeddings for timestep. If provided, the embeddings will be summed with the samples passed |
|
through the `self.time_embedding` layer to obtain the timestep embeddings. |
|
attention_mask (`torch.Tensor`, *optional*, defaults to `None`): |
|
An attention mask of shape `(batch, key_tokens)` is applied to `encoder_hidden_states`. If `1` the mask |
|
is kept, otherwise if `0` it is discarded. Mask will be converted into a bias, which adds large |
|
negative values to the attention scores corresponding to "discard" tokens. |
|
cross_attention_kwargs (`dict`, *optional*): |
|
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under |
|
`self.processor` in |
|
[diffusers.models.attention_processor] |
|
(https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py). |
|
added_cond_kwargs: (`dict`, *optional*): |
|
A kwargs dictionary containing additional embeddings that if specified are added to the embeddings that |
|
are passed along to the UNet blocks. |
|
down_block_additional_residuals: (`tuple` of `torch.Tensor`, *optional*): |
|
A tuple of tensors that if specified are added to the residuals of down unet blocks. |
|
mid_block_additional_residual: (`torch.Tensor`, *optional*): |
|
A tensor that if specified is added to the residual of the middle unet block. |
|
encoder_attention_mask (`torch.Tensor`): |
|
A cross-attention mask of shape `(batch, sequence_length)` is applied to `encoder_hidden_states`. If |
|
`True` the mask is kept, otherwise if `False` it is discarded. Mask will be converted into a bias, |
|
which adds large negative values to the attention scores corresponding to "discard" tokens. |
|
return_dict (`bool`, *optional*, defaults to `True`): |
|
Whether or not to return a [`~models.unet_2d_condition.UNet2DConditionOutput`] instead of a plain |
|
tuple. |
|
cross_attention_kwargs (`dict`, *optional*): |
|
A kwargs dictionary that if specified is passed along to the [`AttnProcessor`]. |
|
added_cond_kwargs: (`dict`, *optional*): |
|
A kwargs dictionary containin additional embeddings that if specified are added to the embeddings that |
|
are passed along to the UNet blocks. |
|
down_block_additional_residuals (`tuple` of `torch.Tensor`, *optional*): |
|
additional residuals to be added to UNet long skip connections from down blocks to up blocks for |
|
example from ControlNet side model(s) |
|
mid_block_additional_residual (`torch.Tensor`, *optional*): |
|
additional residual to be added to UNet mid block output, for example from ControlNet side model |
|
down_intrablock_additional_residuals (`tuple` of `torch.Tensor`, *optional*): |
|
additional residuals to be added within UNet down blocks, for example from T2I-Adapter side model(s) |
|
|
|
Returns: |
|
[`~models.unet_2d_condition.UNet2DConditionOutput`] or `tuple`: |
|
If `return_dict` is True, an [`~models.unet_2d_condition.UNet2DConditionOutput`] is returned, otherwise |
|
a `tuple` is returned where the first element is the sample tensor. |
|
""" |
|
|
|
|
|
|
|
|
|
default_overall_up_factor = 2**self.num_upsamplers |
|
|
|
|
|
forward_upsample_size = False |
|
upsample_size = None |
|
|
|
for dim in sample.shape[-2:]: |
|
if dim % default_overall_up_factor != 0: |
|
|
|
forward_upsample_size = True |
|
break |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if attention_mask is not None: |
|
|
|
|
|
|
|
|
|
attention_mask = (1 - attention_mask.to(sample.dtype)) * -10000.0 |
|
attention_mask = attention_mask.unsqueeze(1) |
|
|
|
|
|
if encoder_attention_mask is not None: |
|
encoder_attention_mask = ( |
|
1 - encoder_attention_mask.to(sample.dtype) |
|
) * -10000.0 |
|
encoder_attention_mask = encoder_attention_mask.unsqueeze(1) |
|
|
|
|
|
if self.config.center_input_sample: |
|
sample = 2 * sample - 1.0 |
|
|
|
|
|
timesteps = timestep |
|
if not torch.is_tensor(timesteps): |
|
|
|
|
|
is_mps = sample.device.type == "mps" |
|
if isinstance(timestep, float): |
|
dtype = torch.float32 if is_mps else torch.float64 |
|
else: |
|
dtype = torch.int32 if is_mps else torch.int64 |
|
timesteps = torch.tensor( |
|
[timesteps], dtype=dtype, device=sample.device) |
|
elif len(timesteps.shape) == 0: |
|
timesteps = timesteps[None].to(sample.device) |
|
|
|
|
|
timesteps = timesteps.expand(sample.shape[0]) |
|
|
|
t_emb = self.time_proj(timesteps) |
|
|
|
|
|
|
|
|
|
t_emb = t_emb.to(dtype=sample.dtype) |
|
|
|
emb = self.time_embedding(t_emb, timestep_cond) |
|
aug_emb = None |
|
|
|
if self.class_embedding is not None: |
|
if class_labels is None: |
|
raise ValueError( |
|
"class_labels should be provided when num_class_embeds > 0" |
|
) |
|
|
|
if self.config.class_embed_type == "timestep": |
|
class_labels = self.time_proj(class_labels) |
|
|
|
|
|
|
|
class_labels = class_labels.to(dtype=sample.dtype) |
|
|
|
class_emb = self.class_embedding( |
|
class_labels).to(dtype=sample.dtype) |
|
|
|
if self.config.class_embeddings_concat: |
|
emb = torch.cat([emb, class_emb], dim=-1) |
|
else: |
|
emb = emb + class_emb |
|
|
|
if self.config.addition_embed_type == "text": |
|
aug_emb = self.add_embedding(encoder_hidden_states) |
|
elif self.config.addition_embed_type == "text_image": |
|
|
|
if "image_embeds" not in added_cond_kwargs: |
|
raise ValueError( |
|
f"{self.__class__} has the config param `addition_embed_type` set to 'text_image'" |
|
"which requires the keyword argument `image_embeds` to be passed in `added_cond_kwargs`" |
|
) |
|
|
|
image_embs = added_cond_kwargs.get("image_embeds") |
|
text_embs = added_cond_kwargs.get( |
|
"text_embeds", encoder_hidden_states) |
|
aug_emb = self.add_embedding(text_embs, image_embs) |
|
elif self.config.addition_embed_type == "text_time": |
|
|
|
if "text_embeds" not in added_cond_kwargs: |
|
raise ValueError( |
|
f"{self.__class__} has the config param `addition_embed_type` set to 'text_time'" |
|
"which requires the keyword argument `text_embeds` to be passed in `added_cond_kwargs`" |
|
) |
|
text_embeds = added_cond_kwargs.get("text_embeds") |
|
if "time_ids" not in added_cond_kwargs: |
|
raise ValueError( |
|
f"{self.__class__} has the config param `addition_embed_type` set to 'text_time'" |
|
"which requires the keyword argument `time_ids` to be passed in `added_cond_kwargs`" |
|
) |
|
time_ids = added_cond_kwargs.get("time_ids") |
|
time_embeds = self.add_time_proj(time_ids.flatten()) |
|
time_embeds = time_embeds.reshape((text_embeds.shape[0], -1)) |
|
add_embeds = torch.concat([text_embeds, time_embeds], dim=-1) |
|
add_embeds = add_embeds.to(emb.dtype) |
|
aug_emb = self.add_embedding(add_embeds) |
|
elif self.config.addition_embed_type == "image": |
|
|
|
if "image_embeds" not in added_cond_kwargs: |
|
raise ValueError( |
|
f"{self.__class__} has the config param `addition_embed_type` set to 'image'" |
|
"which requires the keyword argument `image_embeds` to be passed in `added_cond_kwargs`" |
|
) |
|
image_embs = added_cond_kwargs.get("image_embeds") |
|
aug_emb = self.add_embedding(image_embs) |
|
elif self.config.addition_embed_type == "image_hint": |
|
|
|
if ( |
|
"image_embeds" not in added_cond_kwargs |
|
or "hint" not in added_cond_kwargs |
|
): |
|
raise ValueError( |
|
f"{self.__class__} has the config param `addition_embed_type` set to 'image_hint'" |
|
"which requires the keyword arguments `image_embeds` and `hint` to be passed in `added_cond_kwargs`" |
|
) |
|
image_embs = added_cond_kwargs.get("image_embeds") |
|
hint = added_cond_kwargs.get("hint") |
|
aug_emb, hint = self.add_embedding(image_embs, hint) |
|
sample = torch.cat([sample, hint], dim=1) |
|
|
|
emb = emb + aug_emb if aug_emb is not None else emb |
|
|
|
if self.time_embed_act is not None: |
|
emb = self.time_embed_act(emb) |
|
|
|
if ( |
|
self.encoder_hid_proj is not None |
|
and self.config.encoder_hid_dim_type == "text_proj" |
|
): |
|
encoder_hidden_states = self.encoder_hid_proj( |
|
encoder_hidden_states) |
|
elif ( |
|
self.encoder_hid_proj is not None |
|
and self.config.encoder_hid_dim_type == "text_image_proj" |
|
): |
|
|
|
if "image_embeds" not in added_cond_kwargs: |
|
raise ValueError( |
|
f"{self.__class__} has the config param `encoder_hid_dim_type` set to 'text_image_proj'" |
|
"which requires the keyword argument `image_embeds` to be passed in `added_conditions`" |
|
) |
|
|
|
image_embeds = added_cond_kwargs.get("image_embeds") |
|
encoder_hidden_states = self.encoder_hid_proj( |
|
encoder_hidden_states, image_embeds |
|
) |
|
elif ( |
|
self.encoder_hid_proj is not None |
|
and self.config.encoder_hid_dim_type == "image_proj" |
|
): |
|
|
|
if "image_embeds" not in added_cond_kwargs: |
|
raise ValueError( |
|
f"{self.__class__} has the config param `encoder_hid_dim_type` set to 'image_proj'" |
|
"which requires the keyword argument `image_embeds` to be passed in `added_conditions`" |
|
) |
|
image_embeds = added_cond_kwargs.get("image_embeds") |
|
encoder_hidden_states = self.encoder_hid_proj(image_embeds) |
|
elif ( |
|
self.encoder_hid_proj is not None |
|
and self.config.encoder_hid_dim_type == "ip_image_proj" |
|
): |
|
if "image_embeds" not in added_cond_kwargs: |
|
raise ValueError( |
|
f"{self.__class__} has the config param `encoder_hid_dim_type` set to 'ip_image_proj'" |
|
"which requires the keyword argument `image_embeds` to be passed in `added_conditions`" |
|
) |
|
image_embeds = added_cond_kwargs.get("image_embeds") |
|
image_embeds = self.encoder_hid_proj(image_embeds).to( |
|
encoder_hidden_states.dtype |
|
) |
|
encoder_hidden_states = torch.cat( |
|
[encoder_hidden_states, image_embeds], dim=1 |
|
) |
|
|
|
|
|
sample = self.conv_in(sample) |
|
if cond_tensor is not None: |
|
sample = sample + cond_tensor |
|
|
|
|
|
if ( |
|
cross_attention_kwargs is not None |
|
and cross_attention_kwargs.get("gligen", None) is not None |
|
): |
|
cross_attention_kwargs = cross_attention_kwargs.copy() |
|
gligen_args = cross_attention_kwargs.pop("gligen") |
|
cross_attention_kwargs["gligen"] = { |
|
"objs": self.position_net(**gligen_args) |
|
} |
|
|
|
|
|
lora_scale = ( |
|
cross_attention_kwargs.get("scale", 1.0) |
|
if cross_attention_kwargs is not None |
|
else 1.0 |
|
) |
|
if USE_PEFT_BACKEND: |
|
|
|
scale_lora_layers(self, lora_scale) |
|
|
|
is_controlnet = ( |
|
mid_block_additional_residual is not None |
|
and down_block_additional_residuals is not None |
|
) |
|
|
|
is_adapter = down_intrablock_additional_residuals is not None |
|
|
|
|
|
|
|
if ( |
|
not is_adapter |
|
and mid_block_additional_residual is None |
|
and down_block_additional_residuals is not None |
|
): |
|
deprecate( |
|
"T2I should not use down_block_additional_residuals", |
|
"1.3.0", |
|
"Passing intrablock residual connections with `down_block_additional_residuals` is deprecated \ |
|
and will be removed in diffusers 1.3.0. `down_block_additional_residuals` should only be used \ |
|
for ControlNet. Please make sure use `down_intrablock_additional_residuals` instead. ", |
|
standard_warn=False, |
|
) |
|
down_intrablock_additional_residuals = down_block_additional_residuals |
|
is_adapter = True |
|
|
|
down_block_res_samples = (sample,) |
|
for downsample_block in self.down_blocks: |
|
if ( |
|
hasattr(downsample_block, "has_cross_attention") |
|
and downsample_block.has_cross_attention |
|
): |
|
|
|
additional_residuals = {} |
|
if is_adapter and len(down_intrablock_additional_residuals) > 0: |
|
additional_residuals["additional_residuals"] = ( |
|
down_intrablock_additional_residuals.pop(0) |
|
) |
|
|
|
sample, res_samples = downsample_block( |
|
hidden_states=sample, |
|
temb=emb, |
|
encoder_hidden_states=encoder_hidden_states, |
|
attention_mask=attention_mask, |
|
cross_attention_kwargs=cross_attention_kwargs, |
|
encoder_attention_mask=encoder_attention_mask, |
|
**additional_residuals, |
|
) |
|
else: |
|
sample, res_samples = downsample_block( |
|
hidden_states=sample, temb=emb, scale=lora_scale |
|
) |
|
if is_adapter and len(down_intrablock_additional_residuals) > 0: |
|
sample += down_intrablock_additional_residuals.pop(0) |
|
|
|
down_block_res_samples += res_samples |
|
|
|
if is_controlnet: |
|
new_down_block_res_samples = () |
|
|
|
for down_block_res_sample, down_block_additional_residual in zip( |
|
down_block_res_samples, down_block_additional_residuals |
|
): |
|
down_block_res_sample = ( |
|
down_block_res_sample + down_block_additional_residual |
|
) |
|
new_down_block_res_samples = new_down_block_res_samples + ( |
|
down_block_res_sample, |
|
) |
|
|
|
down_block_res_samples = new_down_block_res_samples |
|
|
|
|
|
if self.mid_block is not None: |
|
if ( |
|
hasattr(self.mid_block, "has_cross_attention") |
|
and self.mid_block.has_cross_attention |
|
): |
|
sample = self.mid_block( |
|
sample, |
|
emb, |
|
encoder_hidden_states=encoder_hidden_states, |
|
attention_mask=attention_mask, |
|
cross_attention_kwargs=cross_attention_kwargs, |
|
encoder_attention_mask=encoder_attention_mask, |
|
) |
|
else: |
|
sample = self.mid_block(sample, emb) |
|
|
|
|
|
if ( |
|
is_adapter |
|
and len(down_intrablock_additional_residuals) > 0 |
|
and sample.shape == down_intrablock_additional_residuals[0].shape |
|
): |
|
sample += down_intrablock_additional_residuals.pop(0) |
|
|
|
if is_controlnet: |
|
sample = sample + mid_block_additional_residual |
|
|
|
|
|
for i, upsample_block in enumerate(self.up_blocks): |
|
is_final_block = i == len(self.up_blocks) - 1 |
|
|
|
res_samples = down_block_res_samples[-len(upsample_block.resnets):] |
|
down_block_res_samples = down_block_res_samples[ |
|
: -len(upsample_block.resnets) |
|
] |
|
|
|
|
|
|
|
if not is_final_block and forward_upsample_size: |
|
upsample_size = down_block_res_samples[-1].shape[2:] |
|
|
|
if ( |
|
hasattr(upsample_block, "has_cross_attention") |
|
and upsample_block.has_cross_attention |
|
): |
|
sample = upsample_block( |
|
hidden_states=sample, |
|
temb=emb, |
|
res_hidden_states_tuple=res_samples, |
|
encoder_hidden_states=encoder_hidden_states, |
|
cross_attention_kwargs=cross_attention_kwargs, |
|
upsample_size=upsample_size, |
|
attention_mask=attention_mask, |
|
encoder_attention_mask=encoder_attention_mask, |
|
) |
|
else: |
|
sample = upsample_block( |
|
hidden_states=sample, |
|
temb=emb, |
|
res_hidden_states_tuple=res_samples, |
|
upsample_size=upsample_size, |
|
scale=lora_scale, |
|
) |
|
|
|
|
|
if post_process: |
|
if self.conv_norm_out: |
|
sample = self.conv_norm_out(sample) |
|
sample = self.conv_act(sample) |
|
sample = self.conv_out(sample) |
|
|
|
if USE_PEFT_BACKEND: |
|
|
|
unscale_lora_layers(self, lora_scale) |
|
|
|
if not return_dict: |
|
return (sample,) |
|
|
|
return UNet2DConditionOutput(sample=sample) |
|
|
|
@classmethod |
|
def load_change_cross_attention_dim( |
|
cls, |
|
pretrained_model_path: PathLike, |
|
subfolder=None, |
|
|
|
): |
|
""" |
|
Load or change the cross-attention dimension of a pre-trained model. |
|
|
|
Parameters: |
|
pretrained_model_name_or_path (:class:`~typing.Union[str, :class:`~pathlib.Path`]`): |
|
The identifier of the pre-trained model or the path to the local folder containing the model. |
|
force_download (:class:`~bool`): |
|
If True, re-download the model even if it is already cached. |
|
resume_download (:class:`~bool`): |
|
If True, resume the download of the model if partially downloaded. |
|
proxies (:class:`~dict`): |
|
A dictionary of proxy servers to use for downloading the model. |
|
cache_dir (:class:`~Optional[str]`): |
|
The path to the cache directory for storing downloaded models. |
|
use_auth_token (:class:`~bool`): |
|
If True, use the authentication token for private models. |
|
revision (:class:`~str`): |
|
The specific model version to use. |
|
use_safetensors (:class:`~bool`): |
|
If True, use the SafeTensors format for loading the model weights. |
|
**kwargs (:class:`~dict`): |
|
Additional keyword arguments passed to the model. |
|
|
|
""" |
|
pretrained_model_path = Path(pretrained_model_path) |
|
if subfolder is not None: |
|
pretrained_model_path = pretrained_model_path.joinpath(subfolder) |
|
config_file = pretrained_model_path / "config.json" |
|
if not (config_file.exists() and config_file.is_file()): |
|
raise RuntimeError( |
|
f"{config_file} does not exist or is not a file") |
|
|
|
unet_config = cls.load_config(config_file) |
|
unet_config["cross_attention_dim"] = 1024 |
|
|
|
model = cls.from_config(unet_config) |
|
|
|
if pretrained_model_path.joinpath(SAFETENSORS_WEIGHTS_NAME).exists(): |
|
logger.debug( |
|
f"loading safeTensors weights from {pretrained_model_path} ..." |
|
) |
|
state_dict = load_file( |
|
pretrained_model_path.joinpath(SAFETENSORS_WEIGHTS_NAME), device="cpu" |
|
) |
|
|
|
elif pretrained_model_path.joinpath(WEIGHTS_NAME).exists(): |
|
logger.debug(f"loading weights from {pretrained_model_path} ...") |
|
state_dict = torch.load( |
|
pretrained_model_path.joinpath(WEIGHTS_NAME), |
|
map_location="cpu", |
|
weights_only=True, |
|
) |
|
else: |
|
raise FileNotFoundError( |
|
f"no weights file found in {pretrained_model_path}") |
|
|
|
model_state_dict = model.state_dict() |
|
for k in state_dict: |
|
if k in model_state_dict: |
|
if state_dict[k].shape != model_state_dict[k].shape: |
|
state_dict[k] = model_state_dict[k] |
|
|
|
m, u = model.load_state_dict(state_dict, strict=False) |
|
print(m, u) |
|
|
|
return model |
|
|