|
|
|
|
|
|
|
|
|
|
|
|
|
""" |
|
This module defines various components used in the ResNet model, such as InflatedConv3D, InflatedGroupNorm, |
|
Upsample3D, Downsample3D, ResnetBlock3D, and Mish activation function. These components are used to construct |
|
a deep neural network model for image classification or other computer vision tasks. |
|
|
|
Classes: |
|
- InflatedConv3d: An inflated 3D convolutional layer, inheriting from nn.Conv2d. |
|
- InflatedGroupNorm: An inflated group normalization layer, inheriting from nn.GroupNorm. |
|
- Upsample3D: A 3D upsampling module, used to increase the resolution of the input tensor. |
|
- Downsample3D: A 3D downsampling module, used to decrease the resolution of the input tensor. |
|
- ResnetBlock3D: A 3D residual block, commonly used in ResNet architectures. |
|
- Mish: A Mish activation function, which is a smooth, non-monotonic activation function. |
|
|
|
To use this module, simply import the classes and functions you need and follow the instructions provided in |
|
the respective class and function docstrings. |
|
""" |
|
|
|
import torch |
|
import torch.nn.functional as F |
|
from einops import rearrange |
|
from torch import nn |
|
|
|
|
|
class InflatedConv3d(nn.Conv2d): |
|
""" |
|
InflatedConv3d is a class that inherits from torch.nn.Conv2d and overrides the forward method. |
|
|
|
This class is used to perform 3D convolution on input tensor x. It is a specialized type of convolutional layer |
|
commonly used in deep learning models for computer vision tasks. The main difference between a regular Conv2d and |
|
InflatedConv3d is that InflatedConv3d is designed to handle 3D input tensors, which are typically the result of |
|
inflating 2D convolutional layers to 3D for use in 3D deep learning tasks. |
|
|
|
Attributes: |
|
Same as torch.nn.Conv2d. |
|
|
|
Methods: |
|
forward(self, x): |
|
Performs 3D convolution on the input tensor x using the InflatedConv3d layer. |
|
|
|
Example: |
|
conv_layer = InflatedConv3d(in_channels=3, out_channels=64, kernel_size=3, stride=1, padding=1) |
|
output = conv_layer(input_tensor) |
|
""" |
|
def forward(self, x): |
|
""" |
|
Forward pass of the InflatedConv3d layer. |
|
|
|
Args: |
|
x (torch.Tensor): Input tensor to the layer. |
|
|
|
Returns: |
|
torch.Tensor: Output tensor after applying the InflatedConv3d layer. |
|
""" |
|
video_length = x.shape[2] |
|
|
|
x = rearrange(x, "b c f h w -> (b f) c h w") |
|
x = super().forward(x) |
|
x = rearrange(x, "(b f) c h w -> b c f h w", f=video_length) |
|
|
|
return x |
|
|
|
|
|
class InflatedGroupNorm(nn.GroupNorm): |
|
""" |
|
InflatedGroupNorm is a custom class that inherits from torch.nn.GroupNorm. |
|
It is used to apply group normalization to 3D tensors. |
|
|
|
Args: |
|
num_groups (int): The number of groups to divide the channels into. |
|
num_channels (int): The number of channels in the input tensor. |
|
eps (float, optional): A small constant to add to the variance to avoid division by zero. Defaults to 1e-5. |
|
affine (bool, optional): If True, the module has learnable affine parameters. Defaults to True. |
|
|
|
Attributes: |
|
weight (torch.Tensor): The learnable weight tensor for scale. |
|
bias (torch.Tensor): The learnable bias tensor for shift. |
|
|
|
Forward method: |
|
x (torch.Tensor): Input tensor to be normalized. |
|
return (torch.Tensor): Normalized tensor. |
|
""" |
|
def forward(self, x): |
|
""" |
|
Performs a forward pass through the CustomClassName. |
|
|
|
:param x: Input tensor of shape (batch_size, channels, video_length, height, width). |
|
:return: Output tensor of shape (batch_size, channels, video_length, height, width). |
|
""" |
|
video_length = x.shape[2] |
|
|
|
x = rearrange(x, "b c f h w -> (b f) c h w") |
|
x = super().forward(x) |
|
x = rearrange(x, "(b f) c h w -> b c f h w", f=video_length) |
|
|
|
return x |
|
|
|
|
|
class Upsample3D(nn.Module): |
|
""" |
|
Upsample3D is a PyTorch module that upsamples a 3D tensor. |
|
|
|
Args: |
|
channels (int): The number of channels in the input tensor. |
|
use_conv (bool): Whether to use a convolutional layer for upsampling. |
|
use_conv_transpose (bool): Whether to use a transposed convolutional layer for upsampling. |
|
out_channels (int): The number of channels in the output tensor. |
|
name (str): The name of the convolutional layer. |
|
""" |
|
def __init__( |
|
self, |
|
channels, |
|
use_conv=False, |
|
use_conv_transpose=False, |
|
out_channels=None, |
|
name="conv", |
|
): |
|
super().__init__() |
|
self.channels = channels |
|
self.out_channels = out_channels or channels |
|
self.use_conv = use_conv |
|
self.use_conv_transpose = use_conv_transpose |
|
self.name = name |
|
|
|
if use_conv_transpose: |
|
raise NotImplementedError |
|
if use_conv: |
|
self.conv = InflatedConv3d(self.channels, self.out_channels, 3, padding=1) |
|
|
|
def forward(self, hidden_states, output_size=None): |
|
""" |
|
Forward pass of the Upsample3D class. |
|
|
|
Args: |
|
hidden_states (torch.Tensor): Input tensor to be upsampled. |
|
output_size (tuple, optional): Desired output size of the upsampled tensor. |
|
|
|
Returns: |
|
torch.Tensor: Upsampled tensor. |
|
|
|
Raises: |
|
AssertionError: If the number of channels in the input tensor does not match the expected channels. |
|
""" |
|
assert hidden_states.shape[1] == self.channels |
|
|
|
if self.use_conv_transpose: |
|
raise NotImplementedError |
|
|
|
|
|
dtype = hidden_states.dtype |
|
if dtype == torch.bfloat16: |
|
hidden_states = hidden_states.to(torch.float32) |
|
|
|
|
|
if hidden_states.shape[0] >= 64: |
|
hidden_states = hidden_states.contiguous() |
|
|
|
|
|
|
|
if output_size is None: |
|
hidden_states = F.interpolate( |
|
hidden_states, scale_factor=[1.0, 2.0, 2.0], mode="nearest" |
|
) |
|
else: |
|
hidden_states = F.interpolate( |
|
hidden_states, size=output_size, mode="nearest" |
|
) |
|
|
|
|
|
if dtype == torch.bfloat16: |
|
hidden_states = hidden_states.to(dtype) |
|
|
|
|
|
|
|
|
|
|
|
|
|
hidden_states = self.conv(hidden_states) |
|
|
|
return hidden_states |
|
|
|
|
|
class Downsample3D(nn.Module): |
|
""" |
|
The Downsample3D class is a PyTorch module for downsampling a 3D tensor, which is used to |
|
reduce the spatial resolution of feature maps, commonly in the encoder part of a neural network. |
|
|
|
Attributes: |
|
channels (int): Number of input channels. |
|
use_conv (bool): Flag to use a convolutional layer for downsampling. |
|
out_channels (int, optional): Number of output channels. Defaults to input channels if None. |
|
padding (int): Padding added to the input. |
|
name (str): Name of the convolutional layer used for downsampling. |
|
|
|
Methods: |
|
forward(self, hidden_states): |
|
Downsamples the input tensor hidden_states and returns the downsampled tensor. |
|
""" |
|
def __init__( |
|
self, channels, use_conv=False, out_channels=None, padding=1, name="conv" |
|
): |
|
""" |
|
Downsamples the given input in the 3D space. |
|
|
|
Args: |
|
channels: The number of input channels. |
|
use_conv: Whether to use a convolutional layer for downsampling. |
|
out_channels: The number of output channels. If None, the input channels are used. |
|
padding: The amount of padding to be added to the input. |
|
name: The name of the convolutional layer. |
|
""" |
|
super().__init__() |
|
self.channels = channels |
|
self.out_channels = out_channels or channels |
|
self.use_conv = use_conv |
|
self.padding = padding |
|
stride = 2 |
|
self.name = name |
|
|
|
if use_conv: |
|
self.conv = InflatedConv3d( |
|
self.channels, self.out_channels, 3, stride=stride, padding=padding |
|
) |
|
else: |
|
raise NotImplementedError |
|
|
|
def forward(self, hidden_states): |
|
""" |
|
Forward pass for the Downsample3D class. |
|
|
|
Args: |
|
hidden_states (torch.Tensor): Input tensor to be downsampled. |
|
|
|
Returns: |
|
torch.Tensor: Downsampled tensor. |
|
|
|
Raises: |
|
AssertionError: If the number of channels in the input tensor does not match the expected channels. |
|
""" |
|
assert hidden_states.shape[1] == self.channels |
|
if self.use_conv and self.padding == 0: |
|
raise NotImplementedError |
|
|
|
assert hidden_states.shape[1] == self.channels |
|
hidden_states = self.conv(hidden_states) |
|
|
|
return hidden_states |
|
|
|
|
|
class ResnetBlock3D(nn.Module): |
|
""" |
|
The ResnetBlock3D class defines a 3D residual block, a common building block in ResNet |
|
architectures for both image and video modeling tasks. |
|
|
|
Attributes: |
|
in_channels (int): Number of input channels. |
|
out_channels (int, optional): Number of output channels, defaults to in_channels if None. |
|
conv_shortcut (bool): Flag to use a convolutional shortcut. |
|
dropout (float): Dropout rate. |
|
temb_channels (int): Number of channels in the time embedding tensor. |
|
groups (int): Number of groups for the group normalization layers. |
|
eps (float): Epsilon value for group normalization. |
|
non_linearity (str): Type of nonlinearity to apply after convolutions. |
|
time_embedding_norm (str): Type of normalization for the time embedding. |
|
output_scale_factor (float): Scaling factor for the output tensor. |
|
use_in_shortcut (bool): Flag to include the input tensor in the shortcut connection. |
|
use_inflated_groupnorm (bool): Flag to use inflated group normalization layers. |
|
|
|
Methods: |
|
forward(self, input_tensor, temb): |
|
Passes the input tensor and time embedding through the residual block and |
|
returns the output tensor. |
|
""" |
|
def __init__( |
|
self, |
|
*, |
|
in_channels, |
|
out_channels=None, |
|
conv_shortcut=False, |
|
dropout=0.0, |
|
temb_channels=512, |
|
groups=32, |
|
groups_out=None, |
|
pre_norm=True, |
|
eps=1e-6, |
|
non_linearity="swish", |
|
time_embedding_norm="default", |
|
output_scale_factor=1.0, |
|
use_in_shortcut=None, |
|
use_inflated_groupnorm=None, |
|
): |
|
super().__init__() |
|
self.pre_norm = pre_norm |
|
self.pre_norm = True |
|
self.in_channels = in_channels |
|
out_channels = in_channels if out_channels is None else out_channels |
|
self.out_channels = out_channels |
|
self.use_conv_shortcut = conv_shortcut |
|
self.time_embedding_norm = time_embedding_norm |
|
self.output_scale_factor = output_scale_factor |
|
|
|
if groups_out is None: |
|
groups_out = groups |
|
|
|
assert use_inflated_groupnorm is not None |
|
if use_inflated_groupnorm: |
|
self.norm1 = InflatedGroupNorm( |
|
num_groups=groups, num_channels=in_channels, eps=eps, affine=True |
|
) |
|
else: |
|
self.norm1 = torch.nn.GroupNorm( |
|
num_groups=groups, num_channels=in_channels, eps=eps, affine=True |
|
) |
|
|
|
self.conv1 = InflatedConv3d( |
|
in_channels, out_channels, kernel_size=3, stride=1, padding=1 |
|
) |
|
|
|
if temb_channels is not None: |
|
if self.time_embedding_norm == "default": |
|
time_emb_proj_out_channels = out_channels |
|
elif self.time_embedding_norm == "scale_shift": |
|
time_emb_proj_out_channels = out_channels * 2 |
|
else: |
|
raise ValueError( |
|
f"unknown time_embedding_norm : {self.time_embedding_norm} " |
|
) |
|
|
|
self.time_emb_proj = torch.nn.Linear( |
|
temb_channels, time_emb_proj_out_channels |
|
) |
|
else: |
|
self.time_emb_proj = None |
|
|
|
if use_inflated_groupnorm: |
|
self.norm2 = InflatedGroupNorm( |
|
num_groups=groups_out, num_channels=out_channels, eps=eps, affine=True |
|
) |
|
else: |
|
self.norm2 = torch.nn.GroupNorm( |
|
num_groups=groups_out, num_channels=out_channels, eps=eps, affine=True |
|
) |
|
self.dropout = torch.nn.Dropout(dropout) |
|
self.conv2 = InflatedConv3d( |
|
out_channels, out_channels, kernel_size=3, stride=1, padding=1 |
|
) |
|
|
|
if non_linearity == "swish": |
|
self.nonlinearity = F.silu() |
|
elif non_linearity == "mish": |
|
self.nonlinearity = Mish() |
|
elif non_linearity == "silu": |
|
self.nonlinearity = nn.SiLU() |
|
|
|
self.use_in_shortcut = ( |
|
self.in_channels != self.out_channels |
|
if use_in_shortcut is None |
|
else use_in_shortcut |
|
) |
|
|
|
self.conv_shortcut = None |
|
if self.use_in_shortcut: |
|
self.conv_shortcut = InflatedConv3d( |
|
in_channels, out_channels, kernel_size=1, stride=1, padding=0 |
|
) |
|
|
|
def forward(self, input_tensor, temb): |
|
""" |
|
Forward pass for the ResnetBlock3D class. |
|
|
|
Args: |
|
input_tensor (torch.Tensor): Input tensor to the ResnetBlock3D layer. |
|
temb (torch.Tensor): Token embedding tensor. |
|
|
|
Returns: |
|
torch.Tensor: Output tensor after passing through the ResnetBlock3D layer. |
|
""" |
|
hidden_states = input_tensor |
|
|
|
hidden_states = self.norm1(hidden_states) |
|
hidden_states = self.nonlinearity(hidden_states) |
|
|
|
hidden_states = self.conv1(hidden_states) |
|
|
|
if temb is not None: |
|
temb = self.time_emb_proj(self.nonlinearity(temb))[:, :, None, None, None] |
|
|
|
if temb is not None and self.time_embedding_norm == "default": |
|
hidden_states = hidden_states + temb |
|
|
|
hidden_states = self.norm2(hidden_states) |
|
|
|
if temb is not None and self.time_embedding_norm == "scale_shift": |
|
scale, shift = torch.chunk(temb, 2, dim=1) |
|
hidden_states = hidden_states * (1 + scale) + shift |
|
|
|
hidden_states = self.nonlinearity(hidden_states) |
|
|
|
hidden_states = self.dropout(hidden_states) |
|
hidden_states = self.conv2(hidden_states) |
|
|
|
if self.conv_shortcut is not None: |
|
input_tensor = self.conv_shortcut(input_tensor) |
|
|
|
output_tensor = (input_tensor + hidden_states) / self.output_scale_factor |
|
|
|
return output_tensor |
|
|
|
|
|
class Mish(torch.nn.Module): |
|
""" |
|
The Mish class implements the Mish activation function, a smooth, non-monotonic function |
|
that can be used in neural networks as an alternative to traditional activation functions like ReLU. |
|
|
|
Methods: |
|
forward(self, hidden_states): |
|
Applies the Mish activation function to the input tensor hidden_states and |
|
returns the resulting tensor. |
|
""" |
|
def forward(self, hidden_states): |
|
""" |
|
Mish activation function. |
|
|
|
Args: |
|
hidden_states (torch.Tensor): The input tensor to apply the Mish activation function to. |
|
|
|
Returns: |
|
hidden_states (torch.Tensor): The output tensor after applying the Mish activation function. |
|
""" |
|
return hidden_states * torch.tanh(torch.nn.functional.softplus(hidden_states)) |
|
|