|
|
|
|
|
|
|
""" |
|
This module contains various transformer blocks for different applications, such as BasicTransformerBlock, |
|
TemporalBasicTransformerBlock, and AudioTemporalBasicTransformerBlock. These blocks are used in various models, |
|
such as GLIGEN, UNet, and others. The transformer blocks implement self-attention, cross-attention, feed-forward |
|
networks, and other related functions. |
|
|
|
Functions and classes included in this module are: |
|
- BasicTransformerBlock: A basic transformer block with self-attention, cross-attention, and feed-forward layers. |
|
- TemporalBasicTransformerBlock: A transformer block with additional temporal attention mechanisms for video data. |
|
- AudioTemporalBasicTransformerBlock: A transformer block with additional audio-specific mechanisms for audio data. |
|
- zero_module: A function to zero out the parameters of a given module. |
|
|
|
For more information on each specific class and function, please refer to the respective docstrings. |
|
""" |
|
|
|
from typing import Any, Dict, List, Optional |
|
|
|
import torch |
|
from diffusers.models.attention import (AdaLayerNorm, AdaLayerNormZero, |
|
Attention, FeedForward) |
|
from diffusers.models.embeddings import SinusoidalPositionalEmbedding |
|
from einops import rearrange |
|
from torch import nn |
|
|
|
|
|
class GatedSelfAttentionDense(nn.Module): |
|
""" |
|
A gated self-attention dense layer that combines visual features and object features. |
|
|
|
Parameters: |
|
query_dim (`int`): The number of channels in the query. |
|
context_dim (`int`): The number of channels in the context. |
|
n_heads (`int`): The number of heads to use for attention. |
|
d_head (`int`): The number of channels in each head. |
|
""" |
|
|
|
def __init__(self, query_dim: int, context_dim: int, n_heads: int, d_head: int): |
|
super().__init__() |
|
|
|
|
|
self.linear = nn.Linear(context_dim, query_dim) |
|
|
|
self.attn = Attention(query_dim=query_dim, heads=n_heads, dim_head=d_head) |
|
self.ff = FeedForward(query_dim, activation_fn="geglu") |
|
|
|
self.norm1 = nn.LayerNorm(query_dim) |
|
self.norm2 = nn.LayerNorm(query_dim) |
|
|
|
self.register_parameter("alpha_attn", nn.Parameter(torch.tensor(0.0))) |
|
self.register_parameter("alpha_dense", nn.Parameter(torch.tensor(0.0))) |
|
|
|
self.enabled = True |
|
|
|
def forward(self, x: torch.Tensor, objs: torch.Tensor) -> torch.Tensor: |
|
""" |
|
Apply the Gated Self-Attention mechanism to the input tensor `x` and object tensor `objs`. |
|
|
|
Args: |
|
x (torch.Tensor): The input tensor. |
|
objs (torch.Tensor): The object tensor. |
|
|
|
Returns: |
|
torch.Tensor: The output tensor after applying Gated Self-Attention. |
|
""" |
|
if not self.enabled: |
|
return x |
|
|
|
n_visual = x.shape[1] |
|
objs = self.linear(objs) |
|
|
|
x = x + self.alpha_attn.tanh() * self.attn(self.norm1(torch.cat([x, objs], dim=1)))[:, :n_visual, :] |
|
x = x + self.alpha_dense.tanh() * self.ff(self.norm2(x)) |
|
|
|
return x |
|
|
|
class BasicTransformerBlock(nn.Module): |
|
r""" |
|
A basic Transformer block. |
|
|
|
Parameters: |
|
dim (`int`): The number of channels in the input and output. |
|
num_attention_heads (`int`): The number of heads to use for multi-head attention. |
|
attention_head_dim (`int`): The number of channels in each head. |
|
dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use. |
|
cross_attention_dim (`int`, *optional*): The size of the encoder_hidden_states vector for cross attention. |
|
activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to be used in feed-forward. |
|
num_embeds_ada_norm (: |
|
obj: `int`, *optional*): The number of diffusion steps used during training. See `Transformer2DModel`. |
|
attention_bias (: |
|
obj: `bool`, *optional*, defaults to `False`): Configure if the attentions should contain a bias parameter. |
|
only_cross_attention (`bool`, *optional*): |
|
Whether to use only cross-attention layers. In this case two cross attention layers are used. |
|
double_self_attention (`bool`, *optional*): |
|
Whether to use two self-attention layers. In this case no cross attention layers are used. |
|
upcast_attention (`bool`, *optional*): |
|
Whether to upcast the attention computation to float32. This is useful for mixed precision training. |
|
norm_elementwise_affine (`bool`, *optional*, defaults to `True`): |
|
Whether to use learnable elementwise affine parameters for normalization. |
|
norm_type (`str`, *optional*, defaults to `"layer_norm"`): |
|
The normalization layer to use. Can be `"layer_norm"`, `"ada_norm"` or `"ada_norm_zero"`. |
|
final_dropout (`bool` *optional*, defaults to False): |
|
Whether to apply a final dropout after the last feed-forward layer. |
|
attention_type (`str`, *optional*, defaults to `"default"`): |
|
The type of attention to use. Can be `"default"` or `"gated"` or `"gated-text-image"`. |
|
positional_embeddings (`str`, *optional*, defaults to `None`): |
|
The type of positional embeddings to apply to. |
|
num_positional_embeddings (`int`, *optional*, defaults to `None`): |
|
The maximum number of positional embeddings to apply. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
dim: int, |
|
num_attention_heads: int, |
|
attention_head_dim: int, |
|
dropout=0.0, |
|
cross_attention_dim: Optional[int] = None, |
|
activation_fn: str = "geglu", |
|
num_embeds_ada_norm: Optional[int] = None, |
|
attention_bias: bool = False, |
|
only_cross_attention: bool = False, |
|
double_self_attention: bool = False, |
|
upcast_attention: bool = False, |
|
norm_elementwise_affine: bool = True, |
|
|
|
norm_type: str = "layer_norm", |
|
norm_eps: float = 1e-5, |
|
final_dropout: bool = False, |
|
attention_type: str = "default", |
|
positional_embeddings: Optional[str] = None, |
|
num_positional_embeddings: Optional[int] = None, |
|
): |
|
super().__init__() |
|
self.only_cross_attention = only_cross_attention |
|
|
|
self.use_ada_layer_norm_zero = ( |
|
num_embeds_ada_norm is not None |
|
) and norm_type == "ada_norm_zero" |
|
self.use_ada_layer_norm = ( |
|
num_embeds_ada_norm is not None |
|
) and norm_type == "ada_norm" |
|
self.use_ada_layer_norm_single = norm_type == "ada_norm_single" |
|
self.use_layer_norm = norm_type == "layer_norm" |
|
|
|
if norm_type in ("ada_norm", "ada_norm_zero") and num_embeds_ada_norm is None: |
|
raise ValueError( |
|
f"`norm_type` is set to {norm_type}, but `num_embeds_ada_norm` is not defined. Please make sure to" |
|
f" define `num_embeds_ada_norm` if setting `norm_type` to {norm_type}." |
|
) |
|
|
|
if positional_embeddings and (num_positional_embeddings is None): |
|
raise ValueError( |
|
"If `positional_embedding` type is defined, `num_positition_embeddings` must also be defined." |
|
) |
|
|
|
if positional_embeddings == "sinusoidal": |
|
self.pos_embed = SinusoidalPositionalEmbedding( |
|
dim, max_seq_length=num_positional_embeddings |
|
) |
|
else: |
|
self.pos_embed = None |
|
|
|
|
|
|
|
if self.use_ada_layer_norm: |
|
self.norm1 = AdaLayerNorm(dim, num_embeds_ada_norm) |
|
elif self.use_ada_layer_norm_zero: |
|
self.norm1 = AdaLayerNormZero(dim, num_embeds_ada_norm) |
|
else: |
|
self.norm1 = nn.LayerNorm( |
|
dim, elementwise_affine=norm_elementwise_affine, eps=norm_eps |
|
) |
|
|
|
self.attn1 = Attention( |
|
query_dim=dim, |
|
heads=num_attention_heads, |
|
dim_head=attention_head_dim, |
|
dropout=dropout, |
|
bias=attention_bias, |
|
cross_attention_dim=cross_attention_dim if only_cross_attention else None, |
|
upcast_attention=upcast_attention, |
|
) |
|
|
|
|
|
if cross_attention_dim is not None or double_self_attention: |
|
|
|
|
|
|
|
self.norm2 = ( |
|
AdaLayerNorm(dim, num_embeds_ada_norm) |
|
if self.use_ada_layer_norm |
|
else nn.LayerNorm( |
|
dim, elementwise_affine=norm_elementwise_affine, eps=norm_eps |
|
) |
|
) |
|
self.attn2 = Attention( |
|
query_dim=dim, |
|
cross_attention_dim=( |
|
cross_attention_dim if not double_self_attention else None |
|
), |
|
heads=num_attention_heads, |
|
dim_head=attention_head_dim, |
|
dropout=dropout, |
|
bias=attention_bias, |
|
upcast_attention=upcast_attention, |
|
) |
|
else: |
|
self.norm2 = None |
|
self.attn2 = None |
|
|
|
|
|
if not self.use_ada_layer_norm_single: |
|
self.norm3 = nn.LayerNorm( |
|
dim, elementwise_affine=norm_elementwise_affine, eps=norm_eps |
|
) |
|
|
|
self.ff = FeedForward( |
|
dim, |
|
dropout=dropout, |
|
activation_fn=activation_fn, |
|
final_dropout=final_dropout, |
|
) |
|
|
|
|
|
if attention_type in {"gated", "gated-text-image"}: |
|
self.fuser = GatedSelfAttentionDense( |
|
dim, cross_attention_dim, num_attention_heads, attention_head_dim |
|
) |
|
|
|
|
|
if self.use_ada_layer_norm_single: |
|
self.scale_shift_table = nn.Parameter( |
|
torch.randn(6, dim) / dim**0.5) |
|
|
|
|
|
self._chunk_size = None |
|
self._chunk_dim = 0 |
|
|
|
def set_chunk_feed_forward(self, chunk_size: Optional[int], dim: int = 0): |
|
""" |
|
Sets the chunk size for feed-forward processing in the transformer block. |
|
|
|
Args: |
|
chunk_size (Optional[int]): The size of the chunks to process in feed-forward layers. |
|
If None, the chunk size is set to the maximum possible value. |
|
dim (int, optional): The dimension along which to split the input tensor into chunks. Defaults to 0. |
|
|
|
Returns: |
|
None. |
|
""" |
|
self._chunk_size = chunk_size |
|
self._chunk_dim = dim |
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.FloatTensor, |
|
attention_mask: Optional[torch.FloatTensor] = None, |
|
encoder_hidden_states: Optional[torch.FloatTensor] = None, |
|
encoder_attention_mask: Optional[torch.FloatTensor] = None, |
|
timestep: Optional[torch.LongTensor] = None, |
|
cross_attention_kwargs: Dict[str, Any] = None, |
|
class_labels: Optional[torch.LongTensor] = None, |
|
) -> torch.FloatTensor: |
|
""" |
|
This function defines the forward pass of the BasicTransformerBlock. |
|
|
|
Args: |
|
self (BasicTransformerBlock): |
|
An instance of the BasicTransformerBlock class. |
|
hidden_states (torch.FloatTensor): |
|
A tensor containing the hidden states. |
|
attention_mask (Optional[torch.FloatTensor], optional): |
|
A tensor containing the attention mask. Defaults to None. |
|
encoder_hidden_states (Optional[torch.FloatTensor], optional): |
|
A tensor containing the encoder hidden states. Defaults to None. |
|
encoder_attention_mask (Optional[torch.FloatTensor], optional): |
|
A tensor containing the encoder attention mask. Defaults to None. |
|
timestep (Optional[torch.LongTensor], optional): |
|
A tensor containing the timesteps. Defaults to None. |
|
cross_attention_kwargs (Dict[str, Any], optional): |
|
Additional cross-attention arguments. Defaults to None. |
|
class_labels (Optional[torch.LongTensor], optional): |
|
A tensor containing the class labels. Defaults to None. |
|
|
|
Returns: |
|
torch.FloatTensor: |
|
A tensor containing the transformed hidden states. |
|
""" |
|
|
|
|
|
batch_size = hidden_states.shape[0] |
|
|
|
gate_msa = None |
|
scale_mlp = None |
|
shift_mlp = None |
|
gate_mlp = None |
|
if self.use_ada_layer_norm: |
|
norm_hidden_states = self.norm1(hidden_states, timestep) |
|
elif self.use_ada_layer_norm_zero: |
|
norm_hidden_states, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.norm1( |
|
hidden_states, timestep, class_labels, hidden_dtype=hidden_states.dtype |
|
) |
|
elif self.use_layer_norm: |
|
norm_hidden_states = self.norm1(hidden_states) |
|
elif self.use_ada_layer_norm_single: |
|
shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = ( |
|
self.scale_shift_table[None] + |
|
timestep.reshape(batch_size, 6, -1) |
|
).chunk(6, dim=1) |
|
norm_hidden_states = self.norm1(hidden_states) |
|
norm_hidden_states = norm_hidden_states * \ |
|
(1 + scale_msa) + shift_msa |
|
norm_hidden_states = norm_hidden_states.squeeze(1) |
|
else: |
|
raise ValueError("Incorrect norm used") |
|
|
|
if self.pos_embed is not None: |
|
norm_hidden_states = self.pos_embed(norm_hidden_states) |
|
|
|
|
|
lora_scale = ( |
|
cross_attention_kwargs.get("scale", 1.0) |
|
if cross_attention_kwargs is not None |
|
else 1.0 |
|
) |
|
|
|
|
|
cross_attention_kwargs = ( |
|
cross_attention_kwargs.copy() if cross_attention_kwargs is not None else {} |
|
) |
|
gligen_kwargs = cross_attention_kwargs.pop("gligen", None) |
|
|
|
attn_output = self.attn1( |
|
norm_hidden_states, |
|
encoder_hidden_states=( |
|
encoder_hidden_states if self.only_cross_attention else None |
|
), |
|
attention_mask=attention_mask, |
|
**cross_attention_kwargs, |
|
) |
|
if self.use_ada_layer_norm_zero: |
|
attn_output = gate_msa.unsqueeze(1) * attn_output |
|
elif self.use_ada_layer_norm_single: |
|
attn_output = gate_msa * attn_output |
|
|
|
hidden_states = attn_output + hidden_states |
|
if hidden_states.ndim == 4: |
|
hidden_states = hidden_states.squeeze(1) |
|
|
|
|
|
if gligen_kwargs is not None: |
|
hidden_states = self.fuser(hidden_states, gligen_kwargs["objs"]) |
|
|
|
|
|
if self.attn2 is not None: |
|
if self.use_ada_layer_norm: |
|
norm_hidden_states = self.norm2(hidden_states, timestep) |
|
elif self.use_ada_layer_norm_zero or self.use_layer_norm: |
|
norm_hidden_states = self.norm2(hidden_states) |
|
elif self.use_ada_layer_norm_single: |
|
|
|
|
|
norm_hidden_states = hidden_states |
|
else: |
|
raise ValueError("Incorrect norm") |
|
|
|
if self.pos_embed is not None and self.use_ada_layer_norm_single is False: |
|
norm_hidden_states = self.pos_embed(norm_hidden_states) |
|
|
|
attn_output = self.attn2( |
|
norm_hidden_states, |
|
encoder_hidden_states=encoder_hidden_states, |
|
attention_mask=encoder_attention_mask, |
|
**cross_attention_kwargs, |
|
) |
|
hidden_states = attn_output + hidden_states |
|
|
|
|
|
if not self.use_ada_layer_norm_single: |
|
norm_hidden_states = self.norm3(hidden_states) |
|
|
|
if self.use_ada_layer_norm_zero: |
|
norm_hidden_states = ( |
|
norm_hidden_states * |
|
(1 + scale_mlp[:, None]) + shift_mlp[:, None] |
|
) |
|
|
|
if self.use_ada_layer_norm_single: |
|
norm_hidden_states = self.norm2(hidden_states) |
|
norm_hidden_states = norm_hidden_states * \ |
|
(1 + scale_mlp) + shift_mlp |
|
|
|
ff_output = self.ff(norm_hidden_states, scale=lora_scale) |
|
|
|
if self.use_ada_layer_norm_zero: |
|
ff_output = gate_mlp.unsqueeze(1) * ff_output |
|
elif self.use_ada_layer_norm_single: |
|
ff_output = gate_mlp * ff_output |
|
|
|
hidden_states = ff_output + hidden_states |
|
if hidden_states.ndim == 4: |
|
hidden_states = hidden_states.squeeze(1) |
|
|
|
return hidden_states |
|
|
|
|
|
class TemporalBasicTransformerBlock(nn.Module): |
|
""" |
|
A PyTorch module that extends the BasicTransformerBlock to include temporal attention mechanisms. |
|
This class is particularly useful for video-related tasks where capturing temporal information within the sequence of frames is necessary. |
|
|
|
Attributes: |
|
dim (int): The dimension of the input and output embeddings. |
|
num_attention_heads (int): The number of attention heads in the multi-head self-attention mechanism. |
|
attention_head_dim (int): The dimension of each attention head. |
|
dropout (float): The dropout probability for the attention scores. |
|
cross_attention_dim (Optional[int]): The dimension of the cross-attention mechanism. |
|
activation_fn (str): The activation function used in the feed-forward layer. |
|
num_embeds_ada_norm (Optional[int]): The number of embeddings for adaptive normalization. |
|
attention_bias (bool): If True, uses bias in the attention mechanism. |
|
only_cross_attention (bool): If True, only uses cross-attention. |
|
upcast_attention (bool): If True, upcasts the attention mechanism for better performance. |
|
unet_use_cross_frame_attention (Optional[bool]): If True, uses cross-frame attention in the UNet model. |
|
unet_use_temporal_attention (Optional[bool]): If True, uses temporal attention in the UNet model. |
|
""" |
|
def __init__( |
|
self, |
|
dim: int, |
|
num_attention_heads: int, |
|
attention_head_dim: int, |
|
dropout=0.0, |
|
cross_attention_dim: Optional[int] = None, |
|
activation_fn: str = "geglu", |
|
num_embeds_ada_norm: Optional[int] = None, |
|
attention_bias: bool = False, |
|
only_cross_attention: bool = False, |
|
upcast_attention: bool = False, |
|
unet_use_cross_frame_attention=None, |
|
unet_use_temporal_attention=None, |
|
): |
|
""" |
|
The TemporalBasicTransformerBlock class is a PyTorch module that extends the BasicTransformerBlock to include temporal attention mechanisms. |
|
This is particularly useful for video-related tasks, where the model needs to capture the temporal information within the sequence of frames. |
|
The block consists of self-attention, cross-attention, feed-forward, and temporal attention mechanisms. |
|
|
|
dim (int): The dimension of the input and output embeddings. |
|
num_attention_heads (int): The number of attention heads in the multi-head self-attention mechanism. |
|
attention_head_dim (int): The dimension of each attention head. |
|
dropout (float, optional): The dropout probability for the attention scores. Defaults to 0.0. |
|
cross_attention_dim (int, optional): The dimension of the cross-attention mechanism. Defaults to None. |
|
activation_fn (str, optional): The activation function used in the feed-forward layer. Defaults to "geglu". |
|
num_embeds_ada_norm (int, optional): The number of embeddings for adaptive normalization. Defaults to None. |
|
attention_bias (bool, optional): If True, uses bias in the attention mechanism. Defaults to False. |
|
only_cross_attention (bool, optional): If True, only uses cross-attention. Defaults to False. |
|
upcast_attention (bool, optional): If True, upcasts the attention mechanism for better performance. Defaults to False. |
|
unet_use_cross_frame_attention (bool, optional): If True, uses cross-frame attention in the UNet model. Defaults to None. |
|
unet_use_temporal_attention (bool, optional): If True, uses temporal attention in the UNet model. Defaults to None. |
|
|
|
Forward method: |
|
hidden_states (torch.FloatTensor): The input hidden states. |
|
encoder_hidden_states (torch.FloatTensor, optional): The encoder hidden states. Defaults to None. |
|
timestep (torch.LongTensor, optional): The current timestep for the transformer model. Defaults to None. |
|
attention_mask (torch.FloatTensor, optional): The attention mask for the self-attention mechanism. Defaults to None. |
|
video_length (int, optional): The length of the video sequence. Defaults to None. |
|
|
|
Returns: |
|
torch.FloatTensor: The output hidden states after passing through the TemporalBasicTransformerBlock. |
|
""" |
|
super().__init__() |
|
self.only_cross_attention = only_cross_attention |
|
self.use_ada_layer_norm = num_embeds_ada_norm is not None |
|
self.unet_use_cross_frame_attention = unet_use_cross_frame_attention |
|
self.unet_use_temporal_attention = unet_use_temporal_attention |
|
|
|
|
|
self.attn1 = Attention( |
|
query_dim=dim, |
|
heads=num_attention_heads, |
|
dim_head=attention_head_dim, |
|
dropout=dropout, |
|
bias=attention_bias, |
|
upcast_attention=upcast_attention, |
|
) |
|
self.norm1 = ( |
|
AdaLayerNorm(dim, num_embeds_ada_norm) |
|
if self.use_ada_layer_norm |
|
else nn.LayerNorm(dim) |
|
) |
|
|
|
|
|
if cross_attention_dim is not None: |
|
self.attn2 = Attention( |
|
query_dim=dim, |
|
cross_attention_dim=cross_attention_dim, |
|
heads=num_attention_heads, |
|
dim_head=attention_head_dim, |
|
dropout=dropout, |
|
bias=attention_bias, |
|
upcast_attention=upcast_attention, |
|
) |
|
else: |
|
self.attn2 = None |
|
|
|
if cross_attention_dim is not None: |
|
self.norm2 = ( |
|
AdaLayerNorm(dim, num_embeds_ada_norm) |
|
if self.use_ada_layer_norm |
|
else nn.LayerNorm(dim) |
|
) |
|
else: |
|
self.norm2 = None |
|
|
|
|
|
self.ff = FeedForward(dim, dropout=dropout, |
|
activation_fn=activation_fn) |
|
self.norm3 = nn.LayerNorm(dim) |
|
self.use_ada_layer_norm_zero = False |
|
|
|
|
|
|
|
if unet_use_temporal_attention is None: |
|
unet_use_temporal_attention = False |
|
if unet_use_temporal_attention: |
|
self.attn_temp = Attention( |
|
query_dim=dim, |
|
heads=num_attention_heads, |
|
dim_head=attention_head_dim, |
|
dropout=dropout, |
|
bias=attention_bias, |
|
upcast_attention=upcast_attention, |
|
) |
|
nn.init.zeros_(self.attn_temp.to_out[0].weight.data) |
|
self.norm_temp = ( |
|
AdaLayerNorm(dim, num_embeds_ada_norm) |
|
if self.use_ada_layer_norm |
|
else nn.LayerNorm(dim) |
|
) |
|
|
|
def forward( |
|
self, |
|
hidden_states, |
|
encoder_hidden_states=None, |
|
timestep=None, |
|
attention_mask=None, |
|
video_length=None, |
|
): |
|
""" |
|
Forward pass for the TemporalBasicTransformerBlock. |
|
|
|
Args: |
|
hidden_states (torch.FloatTensor): The input hidden states with shape (batch_size, seq_len, dim). |
|
encoder_hidden_states (torch.FloatTensor, optional): The encoder hidden states with shape (batch_size, src_seq_len, dim). |
|
timestep (torch.LongTensor, optional): The timestep for the transformer block. |
|
attention_mask (torch.FloatTensor, optional): The attention mask with shape (batch_size, seq_len, seq_len). |
|
video_length (int, optional): The length of the video sequence. |
|
|
|
Returns: |
|
torch.FloatTensor: The output tensor after passing through the transformer block with shape (batch_size, seq_len, dim). |
|
""" |
|
norm_hidden_states = ( |
|
self.norm1(hidden_states, timestep) |
|
if self.use_ada_layer_norm |
|
else self.norm1(hidden_states) |
|
) |
|
|
|
if self.unet_use_cross_frame_attention: |
|
hidden_states = ( |
|
self.attn1( |
|
norm_hidden_states, |
|
attention_mask=attention_mask, |
|
video_length=video_length, |
|
) |
|
+ hidden_states |
|
) |
|
else: |
|
hidden_states = ( |
|
self.attn1(norm_hidden_states, attention_mask=attention_mask) |
|
+ hidden_states |
|
) |
|
|
|
if self.attn2 is not None: |
|
|
|
norm_hidden_states = ( |
|
self.norm2(hidden_states, timestep) |
|
if self.use_ada_layer_norm |
|
else self.norm2(hidden_states) |
|
) |
|
hidden_states = ( |
|
self.attn2( |
|
norm_hidden_states, |
|
encoder_hidden_states=encoder_hidden_states, |
|
attention_mask=attention_mask, |
|
) |
|
+ hidden_states |
|
) |
|
|
|
|
|
hidden_states = self.ff(self.norm3(hidden_states)) + hidden_states |
|
|
|
|
|
if self.unet_use_temporal_attention: |
|
d = hidden_states.shape[1] |
|
hidden_states = rearrange( |
|
hidden_states, "(b f) d c -> (b d) f c", f=video_length |
|
) |
|
norm_hidden_states = ( |
|
self.norm_temp(hidden_states, timestep) |
|
if self.use_ada_layer_norm |
|
else self.norm_temp(hidden_states) |
|
) |
|
hidden_states = self.attn_temp(norm_hidden_states) + hidden_states |
|
hidden_states = rearrange( |
|
hidden_states, "(b d) f c -> (b f) d c", d=d) |
|
|
|
return hidden_states |
|
|
|
|
|
class AudioTemporalBasicTransformerBlock(nn.Module): |
|
""" |
|
A PyTorch module designed to handle audio data within a transformer framework, including temporal attention mechanisms. |
|
|
|
Attributes: |
|
dim (int): The dimension of the input and output embeddings. |
|
num_attention_heads (int): The number of attention heads. |
|
attention_head_dim (int): The dimension of each attention head. |
|
dropout (float): The dropout probability. |
|
cross_attention_dim (Optional[int]): The dimension of the cross-attention mechanism. |
|
activation_fn (str): The activation function for the feed-forward network. |
|
num_embeds_ada_norm (Optional[int]): The number of embeddings for adaptive normalization. |
|
attention_bias (bool): If True, uses bias in the attention mechanism. |
|
only_cross_attention (bool): If True, only uses cross-attention. |
|
upcast_attention (bool): If True, upcasts the attention mechanism to float32. |
|
unet_use_cross_frame_attention (Optional[bool]): If True, uses cross-frame attention in UNet. |
|
unet_use_temporal_attention (Optional[bool]): If True, uses temporal attention in UNet. |
|
depth (int): The depth of the transformer block. |
|
unet_block_name (Optional[str]): The name of the UNet block. |
|
stack_enable_blocks_name (Optional[List[str]]): The list of enabled blocks in the stack. |
|
stack_enable_blocks_depth (Optional[List[int]]): The list of depths for the enabled blocks in the stack. |
|
""" |
|
def __init__( |
|
self, |
|
dim: int, |
|
num_attention_heads: int, |
|
attention_head_dim: int, |
|
dropout=0.0, |
|
cross_attention_dim: Optional[int] = None, |
|
activation_fn: str = "geglu", |
|
num_embeds_ada_norm: Optional[int] = None, |
|
attention_bias: bool = False, |
|
only_cross_attention: bool = False, |
|
upcast_attention: bool = False, |
|
unet_use_cross_frame_attention=None, |
|
unet_use_temporal_attention=None, |
|
depth=0, |
|
unet_block_name=None, |
|
stack_enable_blocks_name: Optional[List[str]] = None, |
|
stack_enable_blocks_depth: Optional[List[int]] = None, |
|
): |
|
""" |
|
Initializes the AudioTemporalBasicTransformerBlock module. |
|
|
|
Args: |
|
dim (int): The dimension of the input and output embeddings. |
|
num_attention_heads (int): The number of attention heads in the multi-head self-attention mechanism. |
|
attention_head_dim (int): The dimension of each attention head. |
|
dropout (float, optional): The dropout probability for the attention mechanism. Defaults to 0.0. |
|
cross_attention_dim (Optional[int], optional): The dimension of the cross-attention mechanism. Defaults to None. |
|
activation_fn (str, optional): The activation function to be used in the feed-forward network. Defaults to "geglu". |
|
num_embeds_ada_norm (Optional[int], optional): The number of embeddings for adaptive normalization. Defaults to None. |
|
attention_bias (bool, optional): If True, uses bias in the attention mechanism. Defaults to False. |
|
only_cross_attention (bool, optional): If True, only uses cross-attention. Defaults to False. |
|
upcast_attention (bool, optional): If True, upcasts the attention mechanism to float32. Defaults to False. |
|
unet_use_cross_frame_attention (Optional[bool], optional): If True, uses cross-frame attention in UNet. Defaults to None. |
|
unet_use_temporal_attention (Optional[bool], optional): If True, uses temporal attention in UNet. Defaults to None. |
|
depth (int, optional): The depth of the transformer block. Defaults to 0. |
|
unet_block_name (Optional[str], optional): The name of the UNet block. Defaults to None. |
|
stack_enable_blocks_name (Optional[List[str]], optional): The list of enabled blocks in the stack. Defaults to None. |
|
stack_enable_blocks_depth (Optional[List[int]], optional): The list of depths for the enabled blocks in the stack. Defaults to None. |
|
""" |
|
super().__init__() |
|
self.only_cross_attention = only_cross_attention |
|
self.use_ada_layer_norm = num_embeds_ada_norm is not None |
|
self.unet_use_cross_frame_attention = unet_use_cross_frame_attention |
|
self.unet_use_temporal_attention = unet_use_temporal_attention |
|
self.unet_block_name = unet_block_name |
|
self.depth = depth |
|
|
|
zero_conv_full = nn.Conv2d( |
|
dim, dim, kernel_size=1) |
|
self.zero_conv_full = zero_module(zero_conv_full) |
|
|
|
zero_conv_face = nn.Conv2d( |
|
dim, dim, kernel_size=1) |
|
self.zero_conv_face = zero_module(zero_conv_face) |
|
|
|
zero_conv_lip = nn.Conv2d( |
|
dim, dim, kernel_size=1) |
|
self.zero_conv_lip = zero_module(zero_conv_lip) |
|
|
|
self.attn1 = Attention( |
|
query_dim=dim, |
|
heads=num_attention_heads, |
|
dim_head=attention_head_dim, |
|
dropout=dropout, |
|
bias=attention_bias, |
|
upcast_attention=upcast_attention, |
|
) |
|
self.norm1 = ( |
|
AdaLayerNorm(dim, num_embeds_ada_norm) |
|
if self.use_ada_layer_norm |
|
else nn.LayerNorm(dim) |
|
) |
|
|
|
|
|
if cross_attention_dim is not None: |
|
if (stack_enable_blocks_name is not None and |
|
stack_enable_blocks_depth is not None and |
|
self.unet_block_name in stack_enable_blocks_name and |
|
self.depth in stack_enable_blocks_depth): |
|
self.attn2_0 = Attention( |
|
query_dim=dim, |
|
cross_attention_dim=cross_attention_dim, |
|
heads=num_attention_heads, |
|
dim_head=attention_head_dim, |
|
dropout=dropout, |
|
bias=attention_bias, |
|
upcast_attention=upcast_attention, |
|
) |
|
self.attn2_1 = Attention( |
|
query_dim=dim, |
|
cross_attention_dim=cross_attention_dim, |
|
heads=num_attention_heads, |
|
dim_head=attention_head_dim, |
|
dropout=dropout, |
|
bias=attention_bias, |
|
upcast_attention=upcast_attention, |
|
) |
|
self.attn2_2 = Attention( |
|
query_dim=dim, |
|
cross_attention_dim=cross_attention_dim, |
|
heads=num_attention_heads, |
|
dim_head=attention_head_dim, |
|
dropout=dropout, |
|
bias=attention_bias, |
|
upcast_attention=upcast_attention, |
|
) |
|
self.attn2 = None |
|
|
|
else: |
|
self.attn2 = Attention( |
|
query_dim=dim, |
|
cross_attention_dim=cross_attention_dim, |
|
heads=num_attention_heads, |
|
dim_head=attention_head_dim, |
|
dropout=dropout, |
|
bias=attention_bias, |
|
upcast_attention=upcast_attention, |
|
) |
|
self.attn2_0=None |
|
else: |
|
self.attn2 = None |
|
self.attn2_0 = None |
|
|
|
if cross_attention_dim is not None: |
|
self.norm2 = ( |
|
AdaLayerNorm(dim, num_embeds_ada_norm) |
|
if self.use_ada_layer_norm |
|
else nn.LayerNorm(dim) |
|
) |
|
else: |
|
self.norm2 = None |
|
|
|
|
|
self.ff = FeedForward(dim, dropout=dropout, |
|
activation_fn=activation_fn) |
|
self.norm3 = nn.LayerNorm(dim) |
|
self.use_ada_layer_norm_zero = False |
|
|
|
|
|
|
|
def forward( |
|
self, |
|
hidden_states, |
|
encoder_hidden_states=None, |
|
timestep=None, |
|
attention_mask=None, |
|
full_mask=None, |
|
face_mask=None, |
|
lip_mask=None, |
|
motion_scale=None, |
|
video_length=None, |
|
): |
|
""" |
|
Forward pass for the AudioTemporalBasicTransformerBlock. |
|
|
|
Args: |
|
hidden_states (torch.FloatTensor): The input hidden states. |
|
encoder_hidden_states (torch.FloatTensor, optional): The encoder hidden states. Defaults to None. |
|
timestep (torch.LongTensor, optional): The timestep for the transformer block. Defaults to None. |
|
attention_mask (torch.FloatTensor, optional): The attention mask. Defaults to None. |
|
full_mask (torch.FloatTensor, optional): The full mask. Defaults to None. |
|
face_mask (torch.FloatTensor, optional): The face mask. Defaults to None. |
|
lip_mask (torch.FloatTensor, optional): The lip mask. Defaults to None. |
|
video_length (int, optional): The length of the video. Defaults to None. |
|
|
|
Returns: |
|
torch.FloatTensor: The output tensor after passing through the AudioTemporalBasicTransformerBlock. |
|
""" |
|
norm_hidden_states = ( |
|
self.norm1(hidden_states, timestep) |
|
if self.use_ada_layer_norm |
|
else self.norm1(hidden_states) |
|
) |
|
|
|
if self.unet_use_cross_frame_attention: |
|
hidden_states = ( |
|
self.attn1( |
|
norm_hidden_states, |
|
attention_mask=attention_mask, |
|
video_length=video_length, |
|
) |
|
+ hidden_states |
|
) |
|
else: |
|
hidden_states = ( |
|
self.attn1(norm_hidden_states, attention_mask=attention_mask) |
|
+ hidden_states |
|
) |
|
|
|
if self.attn2 is not None: |
|
|
|
norm_hidden_states = ( |
|
self.norm2(hidden_states, timestep) |
|
if self.use_ada_layer_norm |
|
else self.norm2(hidden_states) |
|
) |
|
hidden_states = self.attn2( |
|
norm_hidden_states, |
|
encoder_hidden_states=encoder_hidden_states, |
|
attention_mask=attention_mask, |
|
) + hidden_states |
|
|
|
elif self.attn2_0 is not None: |
|
norm_hidden_states = ( |
|
self.norm2(hidden_states, timestep) |
|
if self.use_ada_layer_norm |
|
else self.norm2(hidden_states) |
|
) |
|
|
|
level = self.depth |
|
full_hidden_states = ( |
|
self.attn2_0( |
|
norm_hidden_states, |
|
encoder_hidden_states=encoder_hidden_states, |
|
attention_mask=attention_mask, |
|
) * full_mask[level][:, :, None] |
|
) |
|
bz, sz, c = full_hidden_states.shape |
|
sz_sqrt = int(sz ** 0.5) |
|
full_hidden_states = full_hidden_states.reshape( |
|
bz, sz_sqrt, sz_sqrt, c).permute(0, 3, 1, 2) |
|
full_hidden_states = self.zero_conv_full(full_hidden_states).permute(0, 2, 3, 1).reshape(bz, -1, c) |
|
|
|
face_hidden_state = ( |
|
self.attn2_1( |
|
norm_hidden_states, |
|
encoder_hidden_states=encoder_hidden_states, |
|
attention_mask=attention_mask, |
|
) * face_mask[level][:, :, None] |
|
) |
|
face_hidden_state = face_hidden_state.reshape( |
|
bz, sz_sqrt, sz_sqrt, c).permute(0, 3, 1, 2) |
|
face_hidden_state = self.zero_conv_face( |
|
face_hidden_state).permute(0, 2, 3, 1).reshape(bz, -1, c) |
|
|
|
lip_hidden_state = ( |
|
self.attn2_2( |
|
norm_hidden_states, |
|
encoder_hidden_states=encoder_hidden_states, |
|
attention_mask=attention_mask, |
|
) * lip_mask[level][:, :, None] |
|
|
|
) |
|
lip_hidden_state = lip_hidden_state.reshape( |
|
bz, sz_sqrt, sz_sqrt, c).permute(0, 3, 1, 2) |
|
lip_hidden_state = self.zero_conv_lip( |
|
lip_hidden_state).permute(0, 2, 3, 1).reshape(bz, -1, c) |
|
|
|
if motion_scale is not None: |
|
hidden_states = ( |
|
motion_scale[0] * full_hidden_states + |
|
motion_scale[1] * face_hidden_state + |
|
motion_scale[2] * lip_hidden_state + hidden_states |
|
) |
|
else: |
|
hidden_states = ( |
|
full_hidden_states + |
|
face_hidden_state + |
|
lip_hidden_state + hidden_states |
|
) |
|
|
|
hidden_states = self.ff(self.norm3(hidden_states)) + hidden_states |
|
|
|
return hidden_states |
|
|
|
def zero_module(module): |
|
""" |
|
Zeroes out the parameters of a given module. |
|
|
|
Args: |
|
module (nn.Module): The module whose parameters need to be zeroed out. |
|
|
|
Returns: |
|
None. |
|
""" |
|
for p in module.parameters(): |
|
nn.init.zeros_(p) |
|
return module |
|
|