|
|
|
""" |
|
This module contains the code for a dataset class called FaceMaskDataset, which is used to process and |
|
load image data related to face masks. The dataset class inherits from the PyTorch Dataset class and |
|
provides methods for data augmentation, getting items from the dataset, and determining the length of the |
|
dataset. The module also includes imports for necessary libraries such as json, random, pathlib, torch, |
|
PIL, and transformers. |
|
""" |
|
|
|
import json |
|
import random |
|
from pathlib import Path |
|
|
|
import torch |
|
from PIL import Image |
|
from torch.utils.data import Dataset |
|
from torchvision import transforms |
|
from transformers import CLIPImageProcessor |
|
|
|
|
|
class FaceMaskDataset(Dataset): |
|
""" |
|
FaceMaskDataset is a custom dataset for face mask images. |
|
|
|
Args: |
|
img_size (int): The size of the input images. |
|
drop_ratio (float, optional): The ratio of dropped pixels during data augmentation. Defaults to 0.1. |
|
data_meta_paths (list, optional): The paths to the metadata files containing image paths and labels. Defaults to ["./data/HDTF_meta.json"]. |
|
sample_margin (int, optional): The margin for sampling regions in the image. Defaults to 30. |
|
|
|
Attributes: |
|
img_size (int): The size of the input images. |
|
drop_ratio (float): The ratio of dropped pixels during data augmentation. |
|
data_meta_paths (list): The paths to the metadata files containing image paths and labels. |
|
sample_margin (int): The margin for sampling regions in the image. |
|
processor (CLIPImageProcessor): The image processor for preprocessing images. |
|
transform (transforms.Compose): The image augmentation transform. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
img_size, |
|
drop_ratio=0.1, |
|
data_meta_paths=None, |
|
sample_margin=30, |
|
): |
|
super().__init__() |
|
|
|
self.img_size = img_size |
|
self.sample_margin = sample_margin |
|
|
|
vid_meta = [] |
|
for data_meta_path in data_meta_paths: |
|
with open(data_meta_path, "r", encoding="utf-8") as f: |
|
vid_meta.extend(json.load(f)) |
|
self.vid_meta = vid_meta |
|
self.length = len(self.vid_meta) |
|
|
|
self.clip_image_processor = CLIPImageProcessor() |
|
|
|
self.transform = transforms.Compose( |
|
[ |
|
transforms.Resize(self.img_size), |
|
transforms.ToTensor(), |
|
transforms.Normalize([0.5], [0.5]), |
|
] |
|
) |
|
|
|
self.cond_transform = transforms.Compose( |
|
[ |
|
transforms.Resize(self.img_size), |
|
transforms.ToTensor(), |
|
] |
|
) |
|
|
|
self.drop_ratio = drop_ratio |
|
|
|
def augmentation(self, image, transform, state=None): |
|
""" |
|
Apply data augmentation to the input image. |
|
|
|
Args: |
|
image (PIL.Image): The input image. |
|
transform (torchvision.transforms.Compose): The data augmentation transforms. |
|
state (dict, optional): The random state for reproducibility. Defaults to None. |
|
|
|
Returns: |
|
PIL.Image: The augmented image. |
|
""" |
|
if state is not None: |
|
torch.set_rng_state(state) |
|
return transform(image) |
|
|
|
def __getitem__(self, index): |
|
video_meta = self.vid_meta[index] |
|
video_path = video_meta["image_path"] |
|
mask_path = video_meta["mask_path"] |
|
face_emb_path = video_meta["face_emb"] |
|
|
|
video_frames = sorted(Path(video_path).iterdir()) |
|
video_length = len(video_frames) |
|
|
|
margin = min(self.sample_margin, video_length) |
|
|
|
ref_img_idx = random.randint(0, video_length - 1) |
|
if ref_img_idx + margin < video_length: |
|
tgt_img_idx = random.randint( |
|
ref_img_idx + margin, video_length - 1) |
|
elif ref_img_idx - margin > 0: |
|
tgt_img_idx = random.randint(0, ref_img_idx - margin) |
|
else: |
|
tgt_img_idx = random.randint(0, video_length - 1) |
|
|
|
ref_img_pil = Image.open(video_frames[ref_img_idx]) |
|
tgt_img_pil = Image.open(video_frames[tgt_img_idx]) |
|
|
|
tgt_mask_pil = Image.open(mask_path) |
|
|
|
assert ref_img_pil is not None, "Fail to load reference image." |
|
assert tgt_img_pil is not None, "Fail to load target image." |
|
assert tgt_mask_pil is not None, "Fail to load target mask." |
|
|
|
state = torch.get_rng_state() |
|
tgt_img = self.augmentation(tgt_img_pil, self.transform, state) |
|
tgt_mask_img = self.augmentation( |
|
tgt_mask_pil, self.cond_transform, state) |
|
tgt_mask_img = tgt_mask_img.repeat(3, 1, 1) |
|
ref_img_vae = self.augmentation( |
|
ref_img_pil, self.transform, state) |
|
face_emb = torch.load(face_emb_path) |
|
|
|
|
|
sample = { |
|
"video_dir": video_path, |
|
"img": tgt_img, |
|
"tgt_mask": tgt_mask_img, |
|
"ref_img": ref_img_vae, |
|
"face_emb": face_emb, |
|
} |
|
|
|
return sample |
|
|
|
def __len__(self): |
|
return len(self.vid_meta) |
|
|
|
|
|
if __name__ == "__main__": |
|
data = FaceMaskDataset(img_size=(512, 512)) |
|
train_dataloader = torch.utils.data.DataLoader( |
|
data, batch_size=4, shuffle=True, num_workers=1 |
|
) |
|
for step, batch in enumerate(train_dataloader): |
|
print(batch["tgt_mask"].shape) |
|
break |
|
|