File size: 21,352 Bytes
5a510e7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
# pylint: disable=R0801
# pylint: disable=W0613
# pylint: disable=W0221

"""
temporal_transformers.py

This module provides classes and functions for implementing Temporal Transformers
in PyTorch, designed for handling video data and temporal sequences within transformer-based models.

Functions:
    zero_module(module)
        Zero out the parameters of a module and return it.

Classes:
    TemporalTransformer3DModelOutput(BaseOutput)
        Dataclass for storing the output of TemporalTransformer3DModel.

    VanillaTemporalModule(nn.Module)
        A Vanilla Temporal Module class for handling temporal data.

    TemporalTransformer3DModel(nn.Module)
        A Temporal Transformer 3D Model class for transforming temporal data.

    TemporalTransformerBlock(nn.Module)
        A Temporal Transformer Block class for building the transformer architecture.

    PositionalEncoding(nn.Module)
        A Positional Encoding module for transformers to encode positional information.

Dependencies:
    math
    dataclasses.dataclass
    typing (Callable, Optional)
    torch
    diffusers (FeedForward, Attention, AttnProcessor)
    diffusers.utils (BaseOutput)
    diffusers.utils.import_utils (is_xformers_available)
    einops (rearrange, repeat)
    torch.nn
    xformers
    xformers.ops

Example Usage:
    >>> motion_module = get_motion_module(in_channels=512, motion_module_type="Vanilla", motion_module_kwargs={})
    >>> output = motion_module(input_tensor, temb, encoder_hidden_states)

This module is designed to facilitate the creation, training, and inference of transformer models
that operate on temporal data, such as videos or time-series. It includes mechanisms for applying temporal attention,
managing positional encoding, and integrating with external libraries for efficient attention operations.
"""

# This code is copied from https://github.com/guoyww/AnimateDiff.

import math

import torch
import xformers
import xformers.ops
from diffusers.models.attention import FeedForward
from diffusers.models.attention_processor import Attention, AttnProcessor
from diffusers.utils import BaseOutput
from diffusers.utils.import_utils import is_xformers_available
from einops import rearrange, repeat
from torch import nn


def zero_module(module):
    """
    Zero out the parameters of a module and return it.
    
    Args:
    - module: A PyTorch module to zero out its parameters.

    Returns:
    A zeroed out PyTorch module.
    """
    for p in module.parameters():
        p.detach().zero_()
    return module


class TemporalTransformer3DModelOutput(BaseOutput):
    """
    Output class for the TemporalTransformer3DModel.
    
    Attributes:
        sample (torch.FloatTensor): The output sample tensor from the model.
    """
    sample: torch.FloatTensor

    def get_sample_shape(self):
        """
        Returns the shape of the sample tensor.
        
        Returns:
        Tuple: The shape of the sample tensor.
        """
        return self.sample.shape


def get_motion_module(in_channels, motion_module_type: str, motion_module_kwargs: dict):
    """
    This function returns a motion module based on the given type and parameters.
    
    Args:
    - in_channels (int): The number of input channels for the motion module.
    - motion_module_type (str): The type of motion module to create. Currently, only "Vanilla" is supported.
    - motion_module_kwargs (dict): Additional keyword arguments to pass to the motion module constructor.
    
    Returns:
    VanillaTemporalModule: The created motion module.
    
    Raises:
    ValueError: If an unsupported motion_module_type is provided.
    """
    if motion_module_type == "Vanilla":
        return VanillaTemporalModule(
            in_channels=in_channels,
            **motion_module_kwargs,
        )

    raise ValueError


class VanillaTemporalModule(nn.Module):
    """
    A Vanilla Temporal Module class.

    Args:
    - in_channels (int): The number of input channels for the motion module.
    - num_attention_heads (int): Number of attention heads.
    - num_transformer_block (int): Number of transformer blocks.
    - attention_block_types (tuple): Types of attention blocks.
    - cross_frame_attention_mode: Mode for cross-frame attention.
    - temporal_position_encoding (bool): Flag for temporal position encoding.
    - temporal_position_encoding_max_len (int): Maximum length for temporal position encoding.
    - temporal_attention_dim_div (int): Divisor for temporal attention dimension.
    - zero_initialize (bool): Flag for zero initialization.
    """

    def __init__(
        self,
        in_channels,
        num_attention_heads=8,
        num_transformer_block=2,
        attention_block_types=("Temporal_Self", "Temporal_Self"),
        cross_frame_attention_mode=None,
        temporal_position_encoding=False,
        temporal_position_encoding_max_len=24,
        temporal_attention_dim_div=1,
        zero_initialize=True,
    ):
        super().__init__()

        self.temporal_transformer = TemporalTransformer3DModel(
            in_channels=in_channels,
            num_attention_heads=num_attention_heads,
            attention_head_dim=in_channels
            // num_attention_heads
            // temporal_attention_dim_div,
            num_layers=num_transformer_block,
            attention_block_types=attention_block_types,
            cross_frame_attention_mode=cross_frame_attention_mode,
            temporal_position_encoding=temporal_position_encoding,
            temporal_position_encoding_max_len=temporal_position_encoding_max_len,
        )

        if zero_initialize:
            self.temporal_transformer.proj_out = zero_module(
                self.temporal_transformer.proj_out
            )

    def forward(
        self,
        input_tensor,
        encoder_hidden_states,
        attention_mask=None,
    ):
        """
        Forward pass of the TemporalTransformer3DModel.

        Args:
            hidden_states (torch.Tensor): The hidden states of the model.
            encoder_hidden_states (torch.Tensor, optional): The hidden states of the encoder.
            attention_mask (torch.Tensor, optional): The attention mask.

        Returns:
            torch.Tensor: The output tensor after the forward pass.
        """
        hidden_states = input_tensor
        hidden_states = self.temporal_transformer(
            hidden_states, encoder_hidden_states
        )

        output = hidden_states
        return output


class TemporalTransformer3DModel(nn.Module):
    """
    A Temporal Transformer 3D Model class.

    Args:
    - in_channels (int): The number of input channels.
    - num_attention_heads (int): Number of attention heads.
    - attention_head_dim (int): Dimension of attention heads.
    - num_layers (int): Number of transformer layers.
    - attention_block_types (tuple): Types of attention blocks.
    - dropout (float): Dropout rate.
    - norm_num_groups (int): Number of groups for normalization.
    - cross_attention_dim (int): Dimension for cross-attention.
    - activation_fn (str): Activation function.
    - attention_bias (bool): Flag for attention bias.
    - upcast_attention (bool): Flag for upcast attention.
    - cross_frame_attention_mode: Mode for cross-frame attention.
    - temporal_position_encoding (bool): Flag for temporal position encoding.
    - temporal_position_encoding_max_len (int): Maximum length for temporal position encoding.
    """
    def __init__(
        self,
        in_channels,
        num_attention_heads,
        attention_head_dim,
        num_layers,
        attention_block_types=(
            "Temporal_Self",
            "Temporal_Self",
        ),
        dropout=0.0,
        norm_num_groups=32,
        cross_attention_dim=768,
        activation_fn="geglu",
        attention_bias=False,
        upcast_attention=False,
        cross_frame_attention_mode=None,
        temporal_position_encoding=False,
        temporal_position_encoding_max_len=24,
    ):
        super().__init__()

        inner_dim = num_attention_heads * attention_head_dim

        self.norm = torch.nn.GroupNorm(
            num_groups=norm_num_groups, num_channels=in_channels, eps=1e-6, affine=True
        )
        self.proj_in = nn.Linear(in_channels, inner_dim)

        self.transformer_blocks = nn.ModuleList(
            [
                TemporalTransformerBlock(
                    dim=inner_dim,
                    num_attention_heads=num_attention_heads,
                    attention_head_dim=attention_head_dim,
                    attention_block_types=attention_block_types,
                    dropout=dropout,
                    cross_attention_dim=cross_attention_dim,
                    activation_fn=activation_fn,
                    attention_bias=attention_bias,
                    upcast_attention=upcast_attention,
                    cross_frame_attention_mode=cross_frame_attention_mode,
                    temporal_position_encoding=temporal_position_encoding,
                    temporal_position_encoding_max_len=temporal_position_encoding_max_len,
                )
                for d in range(num_layers)
            ]
        )
        self.proj_out = nn.Linear(inner_dim, in_channels)

    def forward(self, hidden_states, encoder_hidden_states=None):
        """
        Forward pass for the TemporalTransformer3DModel.

        Args:
            hidden_states (torch.Tensor): The input hidden states with shape (batch_size, sequence_length, in_channels).
            encoder_hidden_states (torch.Tensor, optional): The encoder hidden states with shape (batch_size, encoder_sequence_length, in_channels).

        Returns:
            torch.Tensor: The output hidden states with shape (batch_size, sequence_length, in_channels).
        """
        assert (
            hidden_states.dim() == 5
        ), f"Expected hidden_states to have ndim=5, but got ndim={hidden_states.dim()}."
        video_length = hidden_states.shape[2]
        hidden_states = rearrange(hidden_states, "b c f h w -> (b f) c h w")

        batch, _, height, weight = hidden_states.shape
        residual = hidden_states

        hidden_states = self.norm(hidden_states)
        inner_dim = hidden_states.shape[1]
        hidden_states = hidden_states.permute(0, 2, 3, 1).reshape(
            batch, height * weight, inner_dim
        )
        hidden_states = self.proj_in(hidden_states)

        # Transformer Blocks
        for block in self.transformer_blocks:
            hidden_states = block(
                hidden_states,
                encoder_hidden_states=encoder_hidden_states,
                video_length=video_length,
            )

        # output
        hidden_states = self.proj_out(hidden_states)
        hidden_states = (
            hidden_states.reshape(batch, height, weight, inner_dim)
            .permute(0, 3, 1, 2)
            .contiguous()
        )

        output = hidden_states + residual
        output = rearrange(output, "(b f) c h w -> b c f h w", f=video_length)

        return output


class TemporalTransformerBlock(nn.Module):
    """
    A Temporal Transformer Block class.

    Args:
    - dim (int): Dimension of the block.
    - num_attention_heads (int): Number of attention heads.
    - attention_head_dim (int): Dimension of attention heads.
    - attention_block_types (tuple): Types of attention blocks.
    - dropout (float): Dropout rate.
    - cross_attention_dim (int): Dimension for cross-attention.
    - activation_fn (str): Activation function.
    - attention_bias (bool): Flag for attention bias.
    - upcast_attention (bool): Flag for upcast attention.
    - cross_frame_attention_mode: Mode for cross-frame attention.
    - temporal_position_encoding (bool): Flag for temporal position encoding.
    - temporal_position_encoding_max_len (int): Maximum length for temporal position encoding.
    """
    def __init__(
        self,
        dim,
        num_attention_heads,
        attention_head_dim,
        attention_block_types=(
            "Temporal_Self",
            "Temporal_Self",
        ),
        dropout=0.0,
        cross_attention_dim=768,
        activation_fn="geglu",
        attention_bias=False,
        upcast_attention=False,
        cross_frame_attention_mode=None,
        temporal_position_encoding=False,
        temporal_position_encoding_max_len=24,
    ):
        super().__init__()

        attention_blocks = []
        norms = []

        for block_name in attention_block_types:
            attention_blocks.append(
                VersatileAttention(
                    attention_mode=block_name.split("_", maxsplit=1)[0],
                    cross_attention_dim=cross_attention_dim
                    if block_name.endswith("_Cross")
                    else None,
                    query_dim=dim,
                    heads=num_attention_heads,
                    dim_head=attention_head_dim,
                    dropout=dropout,
                    bias=attention_bias,
                    upcast_attention=upcast_attention,
                    cross_frame_attention_mode=cross_frame_attention_mode,
                    temporal_position_encoding=temporal_position_encoding,
                    temporal_position_encoding_max_len=temporal_position_encoding_max_len,
                )
            )
            norms.append(nn.LayerNorm(dim))

        self.attention_blocks = nn.ModuleList(attention_blocks)
        self.norms = nn.ModuleList(norms)

        self.ff = FeedForward(dim, dropout=dropout,
                              activation_fn=activation_fn)
        self.ff_norm = nn.LayerNorm(dim)

    def forward(
        self,
        hidden_states,
        encoder_hidden_states=None,
        video_length=None,
    ):
        """
        Forward pass for the TemporalTransformerBlock.

        Args:
            hidden_states (torch.Tensor): The input hidden states with shape
                (batch_size, video_length, in_channels).
            encoder_hidden_states (torch.Tensor, optional): The encoder hidden states
                with shape (batch_size, encoder_length, in_channels).
            video_length (int, optional): The length of the video.

        Returns:
            torch.Tensor: The output hidden states with shape
                (batch_size, video_length, in_channels).
        """
        for attention_block, norm in zip(self.attention_blocks, self.norms):
            norm_hidden_states = norm(hidden_states)
            hidden_states = (
                attention_block(
                    norm_hidden_states,
                    encoder_hidden_states=encoder_hidden_states
                    if attention_block.is_cross_attention
                    else None,
                    video_length=video_length,
                )
                + hidden_states
            )

        hidden_states = self.ff(self.ff_norm(hidden_states)) + hidden_states

        output = hidden_states
        return output


class PositionalEncoding(nn.Module):
    """
    Positional Encoding module for transformers.

    Args:
    - d_model (int): Model dimension.
    - dropout (float): Dropout rate.
    - max_len (int): Maximum length for positional encoding.
    """
    def __init__(self, d_model, dropout=0.0, max_len=24):
        super().__init__()
        self.dropout = nn.Dropout(p=dropout)
        position = torch.arange(max_len).unsqueeze(1)
        div_term = torch.exp(
            torch.arange(0, d_model, 2) * (-math.log(10000.0) / d_model)
        )
        pe = torch.zeros(1, max_len, d_model)
        pe[0, :, 0::2] = torch.sin(position * div_term)
        pe[0, :, 1::2] = torch.cos(position * div_term)
        self.register_buffer("pe", pe)

    def forward(self, x):
        """
        Forward pass of the PositionalEncoding module.

        This method takes an input tensor `x` and adds the positional encoding to it. The positional encoding is
        generated based on the input tensor's shape and is added to the input tensor element-wise.

        Args:
            x (torch.Tensor): The input tensor to be positionally encoded.

        Returns:
            torch.Tensor: The positionally encoded tensor.
        """
        x = x + self.pe[:, : x.size(1)]
        return self.dropout(x)


class VersatileAttention(Attention):
    """
    Versatile Attention class.

    Args:
    - attention_mode: Attention mode.
    - temporal_position_encoding (bool): Flag for temporal position encoding.
    - temporal_position_encoding_max_len (int): Maximum length for temporal position encoding.
    """
    def __init__(
        self,
        *args,
        attention_mode=None,
        cross_frame_attention_mode=None,
        temporal_position_encoding=False,
        temporal_position_encoding_max_len=24,
        **kwargs,
    ):
        super().__init__(*args, **kwargs)
        assert attention_mode == "Temporal"

        self.attention_mode = attention_mode
        self.is_cross_attention = kwargs.get("cross_attention_dim") is not None

        self.pos_encoder = (
            PositionalEncoding(
                kwargs["query_dim"],
                dropout=0.0,
                max_len=temporal_position_encoding_max_len,
            )
            if (temporal_position_encoding and attention_mode == "Temporal")
            else None
        )

    def extra_repr(self):
        """
        Returns a string representation of the module with information about the attention mode and whether it is cross-attention.
        
        Returns:
            str: A string representation of the module.
        """
        return f"(Module Info) Attention_Mode: {self.attention_mode}, Is_Cross_Attention: {self.is_cross_attention}"

    def set_use_memory_efficient_attention_xformers(
        self,
        use_memory_efficient_attention_xformers: bool,
    ):
        """
        Sets the use of memory-efficient attention xformers for the VersatileAttention class.

        Args:
            use_memory_efficient_attention_xformers (bool): A boolean flag indicating whether to use memory-efficient attention xformers or not.

        Returns:
            None

        """
        if use_memory_efficient_attention_xformers:
            if not is_xformers_available():
                raise ModuleNotFoundError(
                    (
                        "Refer to https://github.com/facebookresearch/xformers for more information on how to install"
                        " xformers"
                    ),
                    name="xformers",
                )

            if not torch.cuda.is_available():
                raise ValueError(
                    "torch.cuda.is_available() should be True but is False. xformers' memory efficient attention is"
                    " only available for GPU "
                )

            try:
                # Make sure we can run the memory efficient attention
                _ = xformers.ops.memory_efficient_attention(
                    torch.randn((1, 2, 40), device="cuda"),
                    torch.randn((1, 2, 40), device="cuda"),
                    torch.randn((1, 2, 40), device="cuda"),
                )
            except Exception as e:
                raise e
            processor = AttnProcessor()
        else:
            processor = AttnProcessor()

        self.set_processor(processor)

    def forward(
        self,
        hidden_states,
        encoder_hidden_states=None,
        attention_mask=None,
        video_length=None,
        **cross_attention_kwargs,
    ):
        """
        Args:
            hidden_states (`torch.Tensor`):
                The hidden states to be passed through the model.
            encoder_hidden_states (`torch.Tensor`, optional):
                The encoder hidden states to be passed through the model.
            attention_mask (`torch.Tensor`, optional):
                The attention mask to be used in the model.
            video_length (`int`, optional):
                The length of the video.
            cross_attention_kwargs (`dict`, optional):
                Additional keyword arguments to be used for cross-attention.

        Returns:
            `torch.Tensor`:
                The output tensor after passing through the model.

        """
        if self.attention_mode == "Temporal":
            d = hidden_states.shape[1]  # d means HxW
            hidden_states = rearrange(
                hidden_states, "(b f) d c -> (b d) f c", f=video_length
            )

            if self.pos_encoder is not None:
                hidden_states = self.pos_encoder(hidden_states)

            encoder_hidden_states = (
                repeat(encoder_hidden_states, "b n c -> (b d) n c", d=d)
                if encoder_hidden_states is not None
                else encoder_hidden_states
            )

        else:
            raise NotImplementedError

        hidden_states = self.processor(
            self,
            hidden_states,
            encoder_hidden_states=encoder_hidden_states,
            attention_mask=attention_mask,
            **cross_attention_kwargs,
        )

        if self.attention_mode == "Temporal":
            hidden_states = rearrange(
                hidden_states, "(b d) f c -> (b f) d c", d=d)

        return hidden_states