Spaces:
Runtime error
Runtime error
import torch | |
import torch.nn as nn | |
import gradio as gr | |
import glob | |
from typing import List | |
import torch.nn.functional as F | |
import torchvision.transforms as T | |
from sklearn.decomposition import PCA | |
import sklearn | |
import numpy as np | |
# Constants | |
patch_h = 40 | |
patch_w = 40 | |
# Use GPU if available | |
if torch.cuda.is_available(): | |
device = torch.device("cuda") | |
else: | |
device = torch.device("cpu") | |
# DINOV2 | |
model = torch.hub.load('facebookresearch/dinov2', 'dinov2_vitl14') | |
# Trasnforms | |
transform = T.Compose([ | |
T.Resize((patch_h * 14, patch_w * 14)), | |
T.Normalize(mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225)), | |
]) | |
# Empty Tenosr | |
imgs_tensor = torch.zeros(4, 3, patch_h * 14, patch_w * 14) | |
# PCA | |
pca = PCA(n_components=3) | |
# Min-Max Scaler | |
from sklearn.preprocessing import MinMaxScaler | |
scaler = MinMaxScaler(clip=True) | |
def query_image( | |
img1, img2, img3, img4, | |
background_threshold, | |
is_foreground_larger_than_threshold, | |
) -> List[np.ndarray]: | |
# Transform | |
imgs = [img1, img2, img3, img4] | |
for i, img in enumerate(imgs): | |
img = np.transpose(img, (2, 0, 1)) / 255 | |
imgs_tensor[i] = transform(torch.Tensor(img)) | |
# Get feature from patches | |
with torch.no_grad(): | |
features_dict = model.forward_features(imgs_tensor) | |
features = features_dict['x_prenorm'][:, 1:] | |
features = features.reshape(4 * patch_h * patch_w, -1) | |
# PCA Feature | |
pca.fit(features) | |
pca_features = pca.transform(features) | |
scaler.fit(pca_features) | |
pca_feature = scaler.transform(pca_features) | |
# Foreground/Background | |
if is_foreground_larger_than_threshold: | |
pca_features_bg = pca_features[:, 0] < background_threshold | |
else: | |
pca_features_bg = pca_features[:, 0] > background_threshold | |
pca_features_fg = ~pca_features_bg | |
# PCA with only foreground | |
pca.fit(features[pca_features_fg]) | |
pca_features_rem = pca.transform(features[pca_features_fg]) | |
# Min Max Normalization | |
scaler.fit(pca_features_rem) | |
pca_features_rem = scaler.transform(pca_features_rem) | |
pca_features_rgb = np.zeros((4 * patch_h * patch_w, 3)) | |
pca_features_rgb[pca_features_bg] = 0 | |
pca_features_rgb[pca_features_fg] = pca_features_rem | |
pca_features_rgb = pca_features_rgb.reshape(4, patch_h, patch_w, 3) | |
return [pca_features_rgb[i] for i in range(4)] | |
description = """ | |
DINOV2 PCA demo for <a href="https://arxiv.org/abs/2304.07193">DINOv2: Learning Robust Visual Features without Supervision(Figure 1)</a> | |
How to Use: | |
1. Enter 4 images that have clean background and similar object. | |
2. Edit threshold and checkbox to split background/foreground. | |
Method: | |
1. Compute the features of patches from 4 images. We can get a feature that have (4 * patch_w * patch_h, feature_dim) shape. | |
2. PCA the feature with 3 dims. After PCA, Min-Max normalization is performed. | |
3. Use first component to split foreground and background. (threshold and checkbox) | |
4. All the feature of patches included in the background are set to 0. | |
5. PCA is performed based on the remaining features. Afer PCA, Min-Max normalization is performed. | |
6. Visualize | |
""" | |
demo = gr.Interface( | |
query_image, | |
inputs=[gr.Image(), gr.Image(), gr.Image(), gr.Image(), gr.Slider(-1, 1, value=0.1), gr.Checkbox(label="foreground is larger than threshold", value=True) ], | |
outputs=[gr.Image(), gr.Image(), gr.Image(), gr.Image()], | |
title="DINOV2 PCA", | |
description=description, | |
examples=[ | |
["assets/1.png", "assets/2.png","assets/3.png","assets/4.png", 0.9, True], | |
["assets/5.png", "assets/6.png","assets/7.png","assets/8.png", 0.6, True], | |
["assets/9.png", "assets/10.png","assets/11.png","assets/12.png", 0.6, True], | |
] | |
) | |
demo.launch() | |