RRoundTable commited on
Commit
b9901e2
1 Parent(s): 0e6d4e1

Use clip scaler

Browse files
Files changed (1) hide show
  1. app.py +9 -3
app.py CHANGED
@@ -36,6 +36,10 @@ imgs_tensor = torch.zeros(4, 3, patch_h * 14, patch_w * 14)
36
  # PCA
37
  pca = PCA(n_components=3)
38
 
 
 
 
 
39
  def query_image(
40
  img1, img2, img3, img4,
41
  background_threshold,
@@ -57,7 +61,8 @@ def query_image(
57
  # PCA Feature
58
  pca.fit(features)
59
  pca_features = pca.transform(features)
60
- pca_feature = sklearn.preprocessing.minmax_scale(pca_features)
 
61
 
62
  # Foreground/Background
63
  if is_foreground_larger_than_threshold:
@@ -71,7 +76,8 @@ def query_image(
71
  pca_features_rem = pca.transform(features[pca_features_fg])
72
 
73
  # Min Max Normalization
74
- pca_features_rem = sklearn.preprocessing.minmax_scale(pca_features_rem)
 
75
 
76
  pca_features_rgb = np.zeros((4 * patch_h * patch_w, 3))
77
  pca_features_rgb[pca_features_bg] = 0
@@ -92,7 +98,7 @@ Method:
92
  1. Compute the features of patches from 4 images. We can get a feature that have (4 * patch_w * patch_h, feature_dim) shape.
93
  2. PCA the feature with 3 dims. After PCA, Min-Max normalization is performed.
94
  3. Use first component to split foreground and background. (threshold and checkbox)
95
- 4. All the feature of patches included in the background are set to 0.=
96
  5. PCA is performed based on the remaining features. Afer PCA, Min-Max normalization is performed.
97
  6. Visualize
98
  """
 
36
  # PCA
37
  pca = PCA(n_components=3)
38
 
39
+ # Min-Max Scaler
40
+ from sklearn.preprocessing import MinMaxScaler
41
+ scaler = MinMaxScaler(clip=True)
42
+
43
  def query_image(
44
  img1, img2, img3, img4,
45
  background_threshold,
 
61
  # PCA Feature
62
  pca.fit(features)
63
  pca_features = pca.transform(features)
64
+ scaler.fit(pca_features)
65
+ pca_feature = scaler.transform(pca_features)
66
 
67
  # Foreground/Background
68
  if is_foreground_larger_than_threshold:
 
76
  pca_features_rem = pca.transform(features[pca_features_fg])
77
 
78
  # Min Max Normalization
79
+ scaler.fit(pca_features_rem)
80
+ pca_features_rem = scaler.transform(pca_features_rem)
81
 
82
  pca_features_rgb = np.zeros((4 * patch_h * patch_w, 3))
83
  pca_features_rgb[pca_features_bg] = 0
 
98
  1. Compute the features of patches from 4 images. We can get a feature that have (4 * patch_w * patch_h, feature_dim) shape.
99
  2. PCA the feature with 3 dims. After PCA, Min-Max normalization is performed.
100
  3. Use first component to split foreground and background. (threshold and checkbox)
101
+ 4. All the feature of patches included in the background are set to 0.
102
  5. PCA is performed based on the remaining features. Afer PCA, Min-Max normalization is performed.
103
  6. Visualize
104
  """