File size: 6,806 Bytes
f4ed285
48e94a3
 
 
 
f4ed285
48e94a3
f4ed285
 
48e94a3
f4ed285
 
 
 
 
 
 
 
48e94a3
f4ed285
48e94a3
f4ed285
48e94a3
f4ed285
48e94a3
f4ed285
48e94a3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f4ed285
 
48e94a3
 
 
 
 
 
 
 
 
f4ed285
 
 
48e94a3
f4ed285
 
ce6a793
f4ed285
48e94a3
f4ed285
48e94a3
f4ed285
 
48e94a3
 
 
 
 
f4ed285
48e94a3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1200067
f4ed285
48e94a3
 
 
 
 
f4ed285
48e94a3
 
f4ed285
 
 
48e94a3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f4ed285
48e94a3
 
 
 
 
f4ed285
48e94a3
 
 
 
 
1e979ad
 
 
48e94a3
f4ed285
48e94a3
 
 
1e979ad
48e94a3
1e979ad
 
 
 
 
 
48e94a3
1e979ad
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
48e94a3
 
 
1e979ad
 
f4ed285
289fc49
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
import gradio as gr
import os
import tempfile
from pathlib import Path
import secrets
from transformers import Qwen2VLForConditionalGeneration, AutoProcessor, AutoModelForCausalLM, AutoTokenizer
from PIL import Image
import torch

# Set up models and processors
ocr_model = Qwen2VLForConditionalGeneration.from_pretrained(
    "Qwen/Qwen2-VL-7B-Instruct",
    torch_dtype="auto",
    device_map="auto",
)
ocr_processor = AutoProcessor.from_pretrained("Qwen/Qwen2-VL-7B-Instruct")

math_model = AutoModelForCausalLM.from_pretrained(
    "Qwen/Qwen2.5-Math-7B-Instruct",
    torch_dtype="auto",
    device_map="auto",
)
math_tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen2.5-Math-7B-Instruct")

math_messages = []

def process_image(image, should_convert=False):
    """
    Processes the uploaded image and extracts math-related content using Qwen2-VL.
    """
    global math_messages
    math_messages = []  # Reset when uploading a new image
    uploaded_file_dir = os.environ.get("GRADIO_TEMP_DIR") or str(
        Path(tempfile.gettempdir()) / "gradio"
    )
    os.makedirs(uploaded_file_dir, exist_ok=True)
    
    name = f"tmp{secrets.token_hex(20)}.jpg"
    filename = os.path.join(uploaded_file_dir, name)
    
    if should_convert:
        # Convert image to RGB if required
        new_img = Image.new('RGB', size=(image.width, image.height), color=(255, 255, 255))
        new_img.paste(image, (0, 0), mask=image)
        image = new_img
    image.save(filename)
    
    # Prepare OCR input
    messages = [
        {
            'role': 'system',
            'content': [{'text': 'You are a helpful assistant.'}]
        },
        {
            'role': 'user',
            'content': [
                {'image': f'file://{filename}'},
                {'text': 'Please describe the math-related content in this image, ensuring that any LaTeX formulas are correctly transcribed. Non-mathematical details do not need to be described.'}
            ]
        }
    ]
    
    # Generate OCR output
    text_prompt = ocr_processor.apply_chat_template(messages, add_generation_prompt=True)
    inputs = ocr_processor(text=[text_prompt], images=[image], padding=True, return_tensors="pt")
    inputs = inputs.to("cpu")  # Use CPU if GPU is unavailable
    output_ids = ocr_model.generate(**inputs, max_new_tokens=1024)
    output_text = ocr_processor.batch_decode(output_ids, skip_special_tokens=True, clean_up_tokenization_spaces=True)[0]
    
    os.remove(filename)
    return output_text

def get_math_response(image_description, user_question):
    """
    Sends the OCR output and user question to Qwen2-Math and retrieves the solution.
    """
    global math_messages

    # Initialize the math assistant role
    if not math_messages:
        math_messages.append({'role': 'system', 'content': 'You are a helpful math assistant.'})
    math_messages = math_messages[:1]  # Retain only the system prompt

    # Format the input question
    if image_description is not None:
        content = f'Image description: {image_description}\n\n'
    else:
        content = ''
    query = f"{content}User question: {user_question}"
    math_messages.append({'role': 'user', 'content': query})

    # Prepare math model input
    inputs = math_tokenizer(
        text=query,
        padding=True,
        return_tensors="pt"
    ).to("cpu")  # Use CPU if GPU is unavailable

    # Generate the math reasoning response
    output_ids = math_model.generate(
        **inputs,
        max_new_tokens=1024,
        pad_token_id=math_tokenizer.pad_token_id
    )
    response = math_tokenizer.batch_decode(output_ids, skip_special_tokens=True, clean_up_tokenization_spaces=True)[0]
    math_messages.append({'role': 'assistant', 'content': response})  # Append assistant response

    return response

def math_chat_bot(image, sketchpad, question, state):
    """
    Orchestrates the OCR (image processing) and math reasoning based on user input.
    """
    current_tab_index = state["tab_index"]
    image_description = None
    # Upload tab
    if current_tab_index == 0:
        if image is not None:
            image_description = process_image(image)
    # Sketch tab
    elif current_tab_index == 1:
        if sketchpad and sketchpad["composite"]:
            image_description = process_image(sketchpad["composite"], True)
    
    response = get_math_response(image_description, question)
    yield response

css = """
#qwen-md .katex-display { display: inline; }
#qwen-md .katex-display>.katex { display: inline; }
#qwen-md .katex-display>.katex>.katex-html { display: inline; }
"""

def tabs_select(e: gr.SelectData, _state):
    _state["tab_index"] = e.index

# Create Gradio interface
with gr.Blocks(css=css) as demo:
    gr.HTML(
        """<center><h1>Qwen2-Math Demo</h1><p>Use either uploaded images or sketches for math-related problems.</p></center>"""
    )
    state = gr.State({"tab_index": 0})
    with gr.Row():
        with gr.Column():
            with gr.Tabs() as input_tabs:
                with gr.Tab("Upload"):
                    input_image = gr.Image(type="pil", label="Upload Image")
                with gr.Tab("Sketch"):
                    input_sketchpad = gr.Sketchpad(label="Sketch Pad")

            input_tabs.select(fn=lambda e: {"tab_index": e.index}, inputs=[], outputs=state)
            input_text = gr.Textbox(label="Your Question")
            submit_btn = gr.Button("Submit")

        with gr.Column():
            output_md = gr.Markdown(
                label="Answer",
                latex_delimiters=[{
                    "left": "\\(",
                    "right": "\\)",
                    "display": True
                }, {
                    "left": "\\begin{equation}",
                    "right": "\\end{equation}",
                    "display": True
                }, {
                    "left": "\\begin{align}",
                    "right": "\\end{align}",
                    "display": True
                }, {
                    "left": "\\begin{alignat}",
                    "right": "\\end{alignat}",
                    "display": True
                }, {
                    "left": "\\begin{gather}",
                    "right": "\\end{gather}",
                    "display": True
                }, {
                    "left": "\\begin{CD}",
                    "right": "\\end{CD}",
                    "display": True
                }, {
                    "left": "\\[",
                    "right": "\\]",
                    "display": True
                }],
                elem_id="qwen-md"
            )

        submit_btn.click(
            fn=math_chat_bot,
            inputs=[input_image, input_sketchpad, input_text, state],
            outputs=output_md,
        )

demo.launch()