Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,128 +1,197 @@
|
|
1 |
import gradio as gr
|
|
|
|
|
|
|
|
|
2 |
from transformers import Qwen2VLForConditionalGeneration, AutoProcessor, AutoModelForCausalLM, AutoTokenizer
|
|
|
3 |
import torch
|
4 |
|
5 |
-
#
|
6 |
ocr_model = Qwen2VLForConditionalGeneration.from_pretrained(
|
7 |
"Qwen/Qwen2-VL-7B-Instruct",
|
8 |
torch_dtype="auto",
|
9 |
device_map="auto",
|
10 |
)
|
11 |
-
|
12 |
ocr_processor = AutoProcessor.from_pretrained("Qwen/Qwen2-VL-7B-Instruct")
|
13 |
|
14 |
-
# Load the Math model and tokenizer
|
15 |
math_model = AutoModelForCausalLM.from_pretrained(
|
16 |
-
"Qwen/Qwen2.5-Math-
|
17 |
torch_dtype="auto",
|
18 |
-
device_map="auto"
|
19 |
)
|
|
|
20 |
|
21 |
-
|
22 |
|
23 |
-
|
24 |
-
|
25 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
26 |
messages = [
|
27 |
{
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
},
|
35 |
-
|
|
|
36 |
}
|
37 |
]
|
38 |
|
39 |
-
#
|
40 |
text_prompt = ocr_processor.apply_chat_template(messages, add_generation_prompt=True)
|
41 |
inputs = ocr_processor(text=[text_prompt], images=[image], padding=True, return_tensors="pt")
|
42 |
-
|
43 |
-
# Run the model to generate OCR results
|
44 |
-
inputs = inputs.to("cuda")
|
45 |
output_ids = ocr_model.generate(**inputs, max_new_tokens=1024)
|
|
|
46 |
|
47 |
-
|
48 |
-
generated_ids = [
|
49 |
-
output_ids[len(input_ids):]
|
50 |
-
for input_ids, output_ids in zip(inputs.input_ids, output_ids)
|
51 |
-
]
|
52 |
-
output_text = ocr_processor.batch_decode(generated_ids, skip_special_tokens=True, clean_up_tokenization_spaces=True)[0]
|
53 |
-
|
54 |
return output_text
|
55 |
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
{"role": "user", "content": prompt}
|
62 |
-
]
|
63 |
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
70 |
|
71 |
-
|
72 |
-
|
73 |
-
|
|
|
|
|
74 |
)
|
75 |
-
|
76 |
-
|
77 |
-
]
|
78 |
|
79 |
-
response = math_tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
|
80 |
-
|
81 |
return response
|
82 |
|
83 |
-
|
84 |
-
|
85 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
86 |
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
if image is None:
|
93 |
-
return image, question, "Please upload an image."
|
94 |
-
extracted_text = ocr_and_query(image, "")
|
95 |
-
math_solution = solve_math_problem(extracted_text)
|
96 |
-
return image, extracted_text, math_solution
|
97 |
-
elif task == "Solve Math Problem from Text":
|
98 |
-
if question.strip() == "":
|
99 |
-
return image, question, "Please enter a math problem."
|
100 |
-
math_solution = solve_math_problem(question)
|
101 |
-
return image, question, math_solution
|
102 |
-
else:
|
103 |
-
return image, question, "Please select a task."
|
104 |
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
with gr.Row():
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
126 |
|
127 |
-
|
128 |
-
app.launch(share=True)
|
|
|
1 |
import gradio as gr
|
2 |
+
import os
|
3 |
+
import tempfile
|
4 |
+
from pathlib import Path
|
5 |
+
import secrets
|
6 |
from transformers import Qwen2VLForConditionalGeneration, AutoProcessor, AutoModelForCausalLM, AutoTokenizer
|
7 |
+
from PIL import Image
|
8 |
import torch
|
9 |
|
10 |
+
# Set up models and processors
|
11 |
ocr_model = Qwen2VLForConditionalGeneration.from_pretrained(
|
12 |
"Qwen/Qwen2-VL-7B-Instruct",
|
13 |
torch_dtype="auto",
|
14 |
device_map="auto",
|
15 |
)
|
|
|
16 |
ocr_processor = AutoProcessor.from_pretrained("Qwen/Qwen2-VL-7B-Instruct")
|
17 |
|
|
|
18 |
math_model = AutoModelForCausalLM.from_pretrained(
|
19 |
+
"Qwen/Qwen2.5-Math-7B-Instruct",
|
20 |
torch_dtype="auto",
|
21 |
+
device_map="auto",
|
22 |
)
|
23 |
+
math_tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen2.5-Math-7B-Instruct")
|
24 |
|
25 |
+
math_messages = []
|
26 |
|
27 |
+
def process_image(image, should_convert=False):
|
28 |
+
"""
|
29 |
+
Processes the uploaded image and extracts math-related content using Qwen2-VL.
|
30 |
+
"""
|
31 |
+
global math_messages
|
32 |
+
math_messages = [] # Reset when uploading a new image
|
33 |
+
uploaded_file_dir = os.environ.get("GRADIO_TEMP_DIR") or str(
|
34 |
+
Path(tempfile.gettempdir()) / "gradio"
|
35 |
+
)
|
36 |
+
os.makedirs(uploaded_file_dir, exist_ok=True)
|
37 |
+
|
38 |
+
name = f"tmp{secrets.token_hex(20)}.jpg"
|
39 |
+
filename = os.path.join(uploaded_file_dir, name)
|
40 |
+
|
41 |
+
if should_convert:
|
42 |
+
# Convert image to RGB if required
|
43 |
+
new_img = Image.new('RGB', size=(image.width, image.height), color=(255, 255, 255))
|
44 |
+
new_img.paste(image, (0, 0), mask=image)
|
45 |
+
image = new_img
|
46 |
+
image.save(filename)
|
47 |
+
|
48 |
+
# Prepare OCR input
|
49 |
messages = [
|
50 |
{
|
51 |
+
'role': 'system',
|
52 |
+
'content': [{'text': 'You are a helpful assistant.'}]
|
53 |
+
},
|
54 |
+
{
|
55 |
+
'role': 'user',
|
56 |
+
'content': [
|
57 |
+
{'image': f'file://{filename}'},
|
58 |
+
{'text': 'Please describe the math-related content in this image, ensuring that any LaTeX formulas are correctly transcribed. Non-mathematical details do not need to be described.'}
|
59 |
+
]
|
60 |
}
|
61 |
]
|
62 |
|
63 |
+
# Generate OCR output
|
64 |
text_prompt = ocr_processor.apply_chat_template(messages, add_generation_prompt=True)
|
65 |
inputs = ocr_processor(text=[text_prompt], images=[image], padding=True, return_tensors="pt")
|
66 |
+
inputs = inputs.to("cuda") # Use CPU if GPU is unavailable
|
|
|
|
|
67 |
output_ids = ocr_model.generate(**inputs, max_new_tokens=1024)
|
68 |
+
output_text = ocr_processor.batch_decode(output_ids, skip_special_tokens=True, clean_up_tokenization_spaces=True)[0]
|
69 |
|
70 |
+
os.remove(filename)
|
|
|
|
|
|
|
|
|
|
|
|
|
71 |
return output_text
|
72 |
|
73 |
+
def get_math_response(image_description, user_question):
|
74 |
+
"""
|
75 |
+
Sends the OCR output and user question to Qwen2-Math and retrieves the solution.
|
76 |
+
"""
|
77 |
+
global math_messages
|
|
|
|
|
78 |
|
79 |
+
# Initialize the math assistant role
|
80 |
+
if not math_messages:
|
81 |
+
math_messages.append({'role': 'system', 'content': 'You are a helpful math assistant.'})
|
82 |
+
math_messages = math_messages[:1] # Retain only the system prompt
|
83 |
+
|
84 |
+
# Format the input question
|
85 |
+
if image_description is not None:
|
86 |
+
content = f'Image description: {image_description}\n\n'
|
87 |
+
else:
|
88 |
+
content = ''
|
89 |
+
query = f"{content}User question: {user_question}"
|
90 |
+
math_messages.append({'role': 'user', 'content': query})
|
91 |
+
|
92 |
+
# Prepare math model input
|
93 |
+
inputs = math_tokenizer(
|
94 |
+
text=query,
|
95 |
+
padding=True,
|
96 |
+
return_tensors="pt"
|
97 |
+
).to("cuda") # Use CPU if GPU is unavailable
|
98 |
|
99 |
+
# Generate the math reasoning response
|
100 |
+
output_ids = math_model.generate(
|
101 |
+
**inputs,
|
102 |
+
max_new_tokens=1024,
|
103 |
+
pad_token_id=math_tokenizer.pad_token_id
|
104 |
)
|
105 |
+
response = math_tokenizer.batch_decode(output_ids, skip_special_tokens=True, clean_up_tokenization_spaces=True)[0]
|
106 |
+
math_messages.append({'role': 'assistant', 'content': response}) # Append assistant response
|
|
|
107 |
|
|
|
|
|
108 |
return response
|
109 |
|
110 |
+
def math_chat_bot(image, sketchpad, question, state):
|
111 |
+
"""
|
112 |
+
Orchestrates the OCR (image processing) and math reasoning based on user input.
|
113 |
+
"""
|
114 |
+
current_tab_index = state["tab_index"]
|
115 |
+
image_description = None
|
116 |
+
# Upload tab
|
117 |
+
if current_tab_index == 0:
|
118 |
+
if image is not None:
|
119 |
+
image_description = process_image(image)
|
120 |
+
# Sketch tab
|
121 |
+
elif current_tab_index == 1:
|
122 |
+
if sketchpad and sketchpad["composite"]:
|
123 |
+
image_description = process_image(sketchpad["composite"], True)
|
124 |
+
|
125 |
+
response = get_math_response(image_description, question)
|
126 |
+
yield response
|
127 |
|
128 |
+
css = """
|
129 |
+
#qwen-md .katex-display { display: inline; }
|
130 |
+
#qwen-md .katex-display>.katex { display: inline; }
|
131 |
+
#qwen-md .katex-display>.katex>.katex-html { display: inline; }
|
132 |
+
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
133 |
|
134 |
+
def tabs_select(e: gr.SelectData, _state):
|
135 |
+
_state["tab_index"] = e.index
|
136 |
+
|
137 |
+
# Create Gradio interface
|
138 |
+
with gr.Blocks(css=css) as demo:
|
139 |
+
gr.HTML("""\
|
140 |
+
<p align="center"><img src="https://modelscope.oss-cn-beijing.aliyuncs.com/resource/qwen.png" style="height: 60px"/><p>"""
|
141 |
+
"""<center><font size=8>📖 Qwen2-Math Demo</center>"""
|
142 |
+
"""\
|
143 |
+
<center><font size=3>This WebUI is based on Qwen2-VL for OCR and Qwen2-Math for mathematical reasoning. You can input either images or texts of mathematical or arithmetic problems.</center>"""
|
144 |
+
)
|
145 |
+
state = gr.State({"tab_index": 0})
|
146 |
with gr.Row():
|
147 |
+
with gr.Column():
|
148 |
+
with gr.Tabs() as input_tabs:
|
149 |
+
with gr.Tab("Upload"):
|
150 |
+
input_image = gr.Image(type="pil", label="Upload")
|
151 |
+
with gr.Tab("Sketch"):
|
152 |
+
input_sketchpad = gr.Sketchpad(type="pil", label="Sketch", layers=False)
|
153 |
+
input_tabs.select(fn=tabs_select, inputs=[state])
|
154 |
+
input_text = gr.Textbox(label="Input your question")
|
155 |
+
with gr.Row():
|
156 |
+
with gr.Column():
|
157 |
+
clear_btn = gr.ClearButton([input_image, input_sketchpad, input_text])
|
158 |
+
with gr.Column():
|
159 |
+
submit_btn = gr.Button("Submit", variant="primary")
|
160 |
+
with gr.Column():
|
161 |
+
output_md = gr.Markdown(label="answer",
|
162 |
+
latex_delimiters=[{
|
163 |
+
"left": "\\(",
|
164 |
+
"right": "\\)",
|
165 |
+
"display": True
|
166 |
+
}, {
|
167 |
+
"left": "\\begin\{equation\}",
|
168 |
+
"right": "\\end\{equation\}",
|
169 |
+
"display": True
|
170 |
+
}, {
|
171 |
+
"left": "\\begin\{align\}",
|
172 |
+
"right": "\\end\{align\}",
|
173 |
+
"display": True
|
174 |
+
}, {
|
175 |
+
"left": "\\begin\{alignat\}",
|
176 |
+
"right": "\\end\{alignat\}",
|
177 |
+
"display": True
|
178 |
+
}, {
|
179 |
+
"left": "\\begin\{gather\}",
|
180 |
+
"right": "\\end\{gather\}",
|
181 |
+
"display": True
|
182 |
+
}, {
|
183 |
+
"left": "\\begin\{CD\}",
|
184 |
+
"right": "\\end\{CD\}",
|
185 |
+
"display": True
|
186 |
+
}, {
|
187 |
+
"left": "\\[",
|
188 |
+
"right": "\\]",
|
189 |
+
"display": True
|
190 |
+
}],
|
191 |
+
elem_id="qwen-md")
|
192 |
+
submit_btn.click(
|
193 |
+
fn=math_chat_bot,
|
194 |
+
inputs=[input_image, input_sketchpad, input_text, state],
|
195 |
+
outputs=output_md)
|
196 |
|
197 |
+
demo.launch(share=True)
|
|