|
import os |
|
from ultralytics import YOLO |
|
import gradio as gr |
|
import PIL.Image as Image |
|
|
|
path="bestn.pt" |
|
|
|
model=YOLO(path) |
|
|
|
def predict_image(img, conf_threshold, iou_threshold): |
|
"""Predicts objects in an image using a YOLOv8 model with adjustable confidence and IOU thresholds.""" |
|
results = model.predict( |
|
source=img, |
|
conf=conf_threshold, |
|
iou=iou_threshold, |
|
show_labels=True, |
|
show_conf=True, |
|
imgsz=640, |
|
) |
|
|
|
for r in results: |
|
im_array = r.plot() |
|
im = Image.fromarray(im_array[..., ::-1]) |
|
|
|
return im |
|
|
|
example_list = [["examples/" + example, 0.25, 0.45] for example in os.listdir("examples")] |
|
iface = gr.Interface( |
|
fn=predict_image, |
|
inputs=[ |
|
gr.Image(type="pil", label="Upload Image"), |
|
gr.Slider(minimum=0, maximum=1, value=0.25, label="Confidence threshold"), |
|
gr.Slider(minimum=0, maximum=1, value=0.45, label="IoU threshold"), |
|
], |
|
outputs=gr.Image(type="pil"), |
|
examples=example_list, |
|
title="Object Detection", |
|
description="Upload Valid Images:Traffic Sign/Light & Fire Hydrant", |
|
) |
|
|
|
iface.launch() |