File size: 1,127 Bytes
f443fbb 7d42c9f 2784e1e 7d42c9f 4789bd7 8cfd5fb 7d42c9f c651427 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 |
import os
from ultralytics import YOLO
import gradio as gr
import PIL.Image as Image
path="bestn.pt"
model=YOLO(path)
def predict_image(img, conf_threshold, iou_threshold):
"""Predicts objects in an image using a YOLOv8 model with adjustable confidence and IOU thresholds."""
results = model.predict(
source=img,
conf=conf_threshold,
iou=iou_threshold,
show_labels=True,
show_conf=True,
imgsz=640,
)
for r in results:
im_array = r.plot()
im = Image.fromarray(im_array[..., ::-1])
return im
example_list = [["examples/" + example, 0.25, 0.45] for example in os.listdir("examples")]
iface = gr.Interface(
fn=predict_image,
inputs=[
gr.Image(type="pil", label="Upload Image"),
gr.Slider(minimum=0, maximum=1, value=0.25, label="Confidence threshold"),
gr.Slider(minimum=0, maximum=1, value=0.45, label="IoU threshold"),
],
outputs=gr.Image(type="pil"),
examples=example_list,
title="Object Detection",
description="Upload Valid Images:Traffic Sign/Light & Fire Hydrant",
)
iface.launch() |