|
|
|
|
|
""" |
|
Wrapper for LivePortrait core functions (CPU-optimized version) |
|
""" |
|
|
|
import os.path as osp |
|
import numpy as np |
|
import cv2 |
|
import torch |
|
import yaml |
|
import psutil |
|
|
|
from .utils.timer import Timer |
|
from .utils.helper_cpu import load_model, concat_feat |
|
from .utils.camera import headpose_pred_to_degree, get_rotation_matrix |
|
from .utils.retargeting_utils import calc_eye_close_ratio, calc_lip_close_ratio |
|
from .config.inference_config import InferenceConfig |
|
from .utils.rprint import rlog as log |
|
|
|
class LivePortraitWrapperCPU(object): |
|
|
|
def __init__(self, cfg: InferenceConfig): |
|
model_config = yaml.load(open(cfg.models_config, 'r'), Loader=yaml.SafeLoader) |
|
|
|
|
|
available_memory = psutil.virtual_memory().available / (1024 * 1024 * 1024) |
|
if available_memory < 2: |
|
log(f"Warning: Only {available_memory:.2f}GB of RAM available. This may cause performance issues or crashes.") |
|
|
|
|
|
self.appearance_feature_extractor = load_model(cfg.checkpoint_F, model_config, 'cpu', 'appearance_feature_extractor') |
|
log(f'Load appearance_feature_extractor done.') |
|
|
|
self.motion_extractor = load_model(cfg.checkpoint_M, model_config, 'cpu', 'motion_extractor') |
|
log(f'Load motion_extractor done.') |
|
|
|
self.warping_module = load_model(cfg.checkpoint_W, model_config, 'cpu', 'warping_module') |
|
log(f'Load warping_module done.') |
|
|
|
self.spade_generator = load_model(cfg.checkpoint_G, model_config, 'cpu', 'spade_generator') |
|
log(f'Load spade_generator done.') |
|
|
|
if cfg.checkpoint_S is not None and osp.exists(cfg.checkpoint_S): |
|
self.stitching_retargeting_module = load_model(cfg.checkpoint_S, model_config, 'cpu', 'stitching_retargeting_module') |
|
log(f'Load stitching_retargeting_module done.') |
|
else: |
|
self.stitching_retargeting_module = None |
|
self.device = 'cpu' |
|
self.cfg = cfg |
|
self.timer = Timer() |
|
|
|
def update_config(self, user_args): |
|
for k, v in user_args.items(): |
|
if hasattr(self.cfg, k): |
|
setattr(self.cfg, k, v) |
|
|
|
def prepare_source(self, img: np.ndarray) -> torch.Tensor: |
|
""" construct the input as standard |
|
img: HxWx3, uint8, 256x256 |
|
""" |
|
h, w = img.shape[:2] |
|
if h != self.cfg.input_shape[0] or w != self.cfg.input_shape[1]: |
|
x = cv2.resize(img, (self.cfg.input_shape[0], self.cfg.input_shape[1])) |
|
else: |
|
x = img.copy() |
|
|
|
if x.ndim == 3: |
|
x = x[np.newaxis].astype(np.float32) / 255. |
|
elif x.ndim == 4: |
|
x = x.astype(np.float32) / 255. |
|
else: |
|
raise ValueError(f'img ndim should be 3 or 4: {x.ndim}') |
|
x = np.clip(x, 0, 1) |
|
x = torch.from_numpy(x).permute(0, 3, 1, 2) |
|
return x |
|
|
|
def prepare_driving_videos(self, imgs) -> torch.Tensor: |
|
""" construct the input as standard |
|
imgs: NxBxHxWx3, uint8 |
|
""" |
|
if isinstance(imgs, list): |
|
_imgs = np.array(imgs)[..., np.newaxis] |
|
elif isinstance(imgs, np.ndarray): |
|
_imgs = imgs |
|
else: |
|
raise ValueError(f'imgs type error: {type(imgs)}') |
|
|
|
y = _imgs.astype(np.float32) / 255. |
|
y = np.clip(y, 0, 1) |
|
y = torch.from_numpy(y).permute(0, 4, 3, 1, 2) |
|
return y |
|
|
|
def extract_feature_3d(self, x: torch.Tensor) -> torch.Tensor: |
|
""" get the appearance feature of the image by F |
|
x: Bx3xHxW, normalized to 0~1 |
|
""" |
|
with torch.no_grad(): |
|
feature_3d = self.appearance_feature_extractor(x) |
|
return feature_3d |
|
|
|
def get_kp_info(self, x: torch.Tensor, **kwargs) -> dict: |
|
""" get the implicit keypoint information |
|
x: Bx3xHxW, normalized to 0~1 |
|
flag_refine_info: whether to transform the pose to degrees and the dimension of the reshape |
|
return: A dict contains keys: 'pitch', 'yaw', 'roll', 't', 'exp', 'scale', 'kp' |
|
""" |
|
with torch.no_grad(): |
|
kp_info = self.motion_extractor(x) |
|
|
|
flag_refine_info: bool = kwargs.get('flag_refine_info', True) |
|
if flag_refine_info: |
|
bs = kp_info['kp'].shape[0] |
|
kp_info['pitch'] = headpose_pred_to_degree(kp_info['pitch'])[:, None] |
|
kp_info['yaw'] = headpose_pred_to_degree(kp_info['yaw'])[:, None] |
|
kp_info['roll'] = headpose_pred_to_degree(kp_info['roll'])[:, None] |
|
kp_info['kp'] = kp_info['kp'].reshape(bs, -1, 3) |
|
kp_info['exp'] = kp_info['exp'].reshape(bs, -1, 3) |
|
|
|
return kp_info |
|
|
|
def get_pose_dct(self, kp_info: dict) -> dict: |
|
pose_dct = dict( |
|
pitch=headpose_pred_to_degree(kp_info['pitch']).item(), |
|
yaw=headpose_pred_to_degree(kp_info['yaw']).item(), |
|
roll=headpose_pred_to_degree(kp_info['roll']).item(), |
|
) |
|
return pose_dct |
|
|
|
def get_fs_and_kp_info(self, source_prepared, driving_first_frame): |
|
|
|
source_kp_info = self.get_kp_info(source_prepared, flag_refine_info=True) |
|
source_rotation = get_rotation_matrix(source_kp_info['pitch'], source_kp_info['yaw'], source_kp_info['roll']) |
|
|
|
|
|
driving_first_frame_kp_info = self.get_kp_info(driving_first_frame, flag_refine_info=True) |
|
driving_first_frame_rotation = get_rotation_matrix( |
|
driving_first_frame_kp_info['pitch'], |
|
driving_first_frame_kp_info['yaw'], |
|
driving_first_frame_kp_info['roll'] |
|
) |
|
|
|
|
|
source_feature_3d = self.extract_feature_3d(source_prepared) |
|
|
|
return source_kp_info, source_rotation, source_feature_3d, driving_first_frame_kp_info, driving_first_frame_rotation |
|
|
|
def transform_keypoint(self, kp_info: dict): |
|
""" |
|
transform the implicit keypoints with the pose, shift, and expression deformation |
|
kp: BxNx3 |
|
""" |
|
kp = kp_info['kp'] |
|
pitch, yaw, roll = kp_info['pitch'], kp_info['yaw'], kp_info['roll'] |
|
|
|
t, exp = kp_info['t'], kp_info['exp'] |
|
scale = kp_info['scale'] |
|
|
|
pitch = headpose_pred_to_degree(pitch) |
|
yaw = headpose_pred_to_degree(yaw) |
|
roll = headpose_pred_to_degree(roll) |
|
|
|
bs = kp.shape[0] |
|
if kp.ndim == 2: |
|
num_kp = kp.shape[1] // 3 |
|
else: |
|
num_kp = kp.shape[1] |
|
|
|
rot_mat = get_rotation_matrix(pitch, yaw, roll) |
|
|
|
|
|
kp_transformed = kp.view(bs, num_kp, 3) @ rot_mat + exp.view(bs, num_kp, 3) |
|
kp_transformed *= scale[..., None] |
|
kp_transformed[:, :, 0:2] += t[:, None, 0:2] |
|
|
|
return kp_transformed |
|
|
|
def retarget_eye(self, kp_source: torch.Tensor, eye_close_ratio: torch.Tensor) -> torch.Tensor: |
|
""" |
|
kp_source: BxNx3 |
|
eye_close_ratio: Bx3 |
|
Return: Bx(3*num_kp+2) |
|
""" |
|
feat_eye = concat_feat(kp_source, eye_close_ratio) |
|
|
|
with torch.no_grad(): |
|
delta = self.stitching_retargeting_module['eye'](feat_eye) |
|
|
|
return delta |
|
|
|
def retarget_lip(self, kp_source: torch.Tensor, lip_close_ratio: torch.Tensor) -> torch.Tensor: |
|
""" |
|
kp_source: BxNx3 |
|
lip_close_ratio: Bx2 |
|
""" |
|
feat_lip = concat_feat(kp_source, lip_close_ratio) |
|
|
|
with torch.no_grad(): |
|
delta = self.stitching_retargeting_module['lip'](feat_lip) |
|
|
|
return delta |
|
|
|
def stitch(self, kp_source: torch.Tensor, kp_driving: torch.Tensor) -> torch.Tensor: |
|
""" |
|
kp_source: BxNx3 |
|
kp_driving: BxNx3 |
|
Return: Bx(3*num_kp+2) |
|
""" |
|
feat_stiching = concat_feat(kp_source, kp_driving) |
|
|
|
with torch.no_grad(): |
|
delta = self.stitching_retargeting_module['stitching'](feat_stiching) |
|
|
|
return delta |
|
|
|
def stitching(self, kp_source: torch.Tensor, kp_driving: torch.Tensor) -> torch.Tensor: |
|
""" conduct the stitching |
|
kp_source: Bxnum_kpx3 |
|
kp_driving: Bxnum_kpx3 |
|
""" |
|
if self.stitching_retargeting_module is not None: |
|
bs, num_kp = kp_source.shape[:2] |
|
|
|
kp_driving_new = kp_driving.clone() |
|
delta = self.stitch(kp_source, kp_driving_new) |
|
|
|
delta_exp = delta[..., :3*num_kp].reshape(bs, num_kp, 3) |
|
delta_tx_ty = delta[..., 3*num_kp:3*num_kp+2].reshape(bs, 1, 2) |
|
|
|
kp_driving_new += delta_exp |
|
kp_driving_new[..., :2] += delta_tx_ty |
|
|
|
return kp_driving_new |
|
|
|
return kp_driving |
|
|
|
def warp_decode(self, feature_3d: torch.Tensor, kp_source: torch.Tensor, kp_driving: torch.Tensor) -> torch.Tensor: |
|
""" get the image after the warping of the implicit keypoints |
|
feature_3d: Bx32x16x64x64, feature volume |
|
kp_source: BxNx3 |
|
kp_driving: BxNx3 |
|
""" |
|
|
|
with torch.no_grad(): |
|
|
|
ret_dct = self.warping_module(feature_3d, kp_source=kp_source, kp_driving=kp_driving) |
|
|
|
ret_dct['out'] = self.spade_generator(feature=ret_dct['out']) |
|
|
|
return ret_dct |
|
|
|
def parse_output(self, out: torch.Tensor) -> np.ndarray: |
|
""" construct the output as standard |
|
return: 1xHxWx3, uint8 |
|
""" |
|
out = np.transpose(out.data.numpy(), [0, 2, 3, 1]) |
|
out = np.clip(out, 0, 1) |
|
out = np.clip(out * 255, 0, 255).astype(np.uint8) |
|
|
|
return out |
|
|
|
def calc_retargeting_ratio(self, source_lmk, driving_lmk_lst): |
|
input_eye_ratio_lst = [] |
|
input_lip_ratio_lst = [] |
|
for lmk in driving_lmk_lst: |
|
|
|
input_eye_ratio_lst.append(calc_eye_close_ratio(lmk[None])) |
|
|
|
input_lip_ratio_lst.append(calc_lip_close_ratio(lmk[None])) |
|
return input_eye_ratio_lst, input_lip_ratio_lst |
|
|
|
def calc_combined_eye_ratio(self, input_eye_ratio, source_lmk): |
|
eye_close_ratio = calc_eye_close_ratio(source_lmk[None]) |
|
eye_close_ratio_tensor = torch.from_numpy(eye_close_ratio).float().to(self.device) |
|
input_eye_ratio_tensor = torch.tensor([input_eye_ratio[0][0]]).reshape(1, 1).to(self.device) |
|
|
|
combined_eye_ratio_tensor = torch.cat([eye_close_ratio_tensor, input_eye_ratio_tensor], dim=1) |
|
return combined_eye_ratio_tensor |
|
|
|
def calc_combined_lip_ratio(self, input_lip_ratio, source_lmk): |
|
lip_close_ratio = calc_lip_close_ratio(source_lmk[None]) |
|
lip_close_ratio_tensor = torch.from_numpy(lip_close_ratio).float().to(self.device) |
|
|
|
input_lip_ratio_tensor = torch.tensor([input_lip_ratio[0]]).to(self.device) |
|
if input_lip_ratio_tensor.shape != torch.Size([1, 1]): |
|
input_lip_ratio_tensor = input_lip_ratio_tensor.reshape(1, 1) |
|
combined_lip_ratio_tensor = torch.cat([lip_close_ratio_tensor, input_lip_ratio_tensor], dim=1) |
|
return combined_lip_ratio_tensor |