Create live_portrait_wrapper_cpu.py
Browse files- src/live_portrait_wrapper_cpu.py +288 -0
src/live_portrait_wrapper_cpu.py
ADDED
@@ -0,0 +1,288 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding: utf-8
|
2 |
+
|
3 |
+
"""
|
4 |
+
Wrapper for LivePortrait core functions (CPU-optimized version)
|
5 |
+
"""
|
6 |
+
|
7 |
+
import os.path as osp
|
8 |
+
import numpy as np
|
9 |
+
import cv2
|
10 |
+
import torch
|
11 |
+
import yaml
|
12 |
+
import psutil
|
13 |
+
|
14 |
+
from .utils.timer import Timer
|
15 |
+
from .utils.helper_cpu import load_model, concat_feat
|
16 |
+
from .utils.camera import headpose_pred_to_degree, get_rotation_matrix
|
17 |
+
from .utils.retargeting_utils import calc_eye_close_ratio, calc_lip_close_ratio
|
18 |
+
from .config.inference_config import InferenceConfig
|
19 |
+
from .utils.rprint import rlog as log
|
20 |
+
|
21 |
+
class LivePortraitWrapperCPU(object):
|
22 |
+
|
23 |
+
def __init__(self, cfg: InferenceConfig):
|
24 |
+
model_config = yaml.load(open(cfg.models_config, 'r'), Loader=yaml.SafeLoader)
|
25 |
+
|
26 |
+
# Check available memory
|
27 |
+
available_memory = psutil.virtual_memory().available / (1024 * 1024 * 1024) # in GB
|
28 |
+
if available_memory < 2: # If less than 2GB available
|
29 |
+
log(f"Warning: Only {available_memory:.2f}GB of RAM available. This may cause performance issues or crashes.")
|
30 |
+
|
31 |
+
# init F
|
32 |
+
self.appearance_feature_extractor = load_model(cfg.checkpoint_F, model_config, 'cpu', 'appearance_feature_extractor')
|
33 |
+
log(f'Load appearance_feature_extractor done.')
|
34 |
+
# init M
|
35 |
+
self.motion_extractor = load_model(cfg.checkpoint_M, model_config, 'cpu', 'motion_extractor')
|
36 |
+
log(f'Load motion_extractor done.')
|
37 |
+
# init W
|
38 |
+
self.warping_module = load_model(cfg.checkpoint_W, model_config, 'cpu', 'warping_module')
|
39 |
+
log(f'Load warping_module done.')
|
40 |
+
# init G
|
41 |
+
self.spade_generator = load_model(cfg.checkpoint_G, model_config, 'cpu', 'spade_generator')
|
42 |
+
log(f'Load spade_generator done.')
|
43 |
+
# init S and R
|
44 |
+
if cfg.checkpoint_S is not None and osp.exists(cfg.checkpoint_S):
|
45 |
+
self.stitching_retargeting_module = load_model(cfg.checkpoint_S, model_config, 'cpu', 'stitching_retargeting_module')
|
46 |
+
log(f'Load stitching_retargeting_module done.')
|
47 |
+
else:
|
48 |
+
self.stitching_retargeting_module = None
|
49 |
+
self.device = 'cpu'
|
50 |
+
self.cfg = cfg
|
51 |
+
self.timer = Timer()
|
52 |
+
|
53 |
+
def update_config(self, user_args):
|
54 |
+
for k, v in user_args.items():
|
55 |
+
if hasattr(self.cfg, k):
|
56 |
+
setattr(self.cfg, k, v)
|
57 |
+
|
58 |
+
def prepare_source(self, img: np.ndarray) -> torch.Tensor:
|
59 |
+
""" construct the input as standard
|
60 |
+
img: HxWx3, uint8, 256x256
|
61 |
+
"""
|
62 |
+
h, w = img.shape[:2]
|
63 |
+
if h != self.cfg.input_shape[0] or w != self.cfg.input_shape[1]:
|
64 |
+
x = cv2.resize(img, (self.cfg.input_shape[0], self.cfg.input_shape[1]))
|
65 |
+
else:
|
66 |
+
x = img.copy()
|
67 |
+
|
68 |
+
if x.ndim == 3:
|
69 |
+
x = x[np.newaxis].astype(np.float32) / 255. # HxWx3 -> 1xHxWx3, normalized to 0~1
|
70 |
+
elif x.ndim == 4:
|
71 |
+
x = x.astype(np.float32) / 255. # BxHxWx3, normalized to 0~1
|
72 |
+
else:
|
73 |
+
raise ValueError(f'img ndim should be 3 or 4: {x.ndim}')
|
74 |
+
x = np.clip(x, 0, 1) # clip to 0~1
|
75 |
+
x = torch.from_numpy(x).permute(0, 3, 1, 2) # 1xHxWx3 -> 1x3xHxW
|
76 |
+
return x
|
77 |
+
|
78 |
+
def prepare_driving_videos(self, imgs) -> torch.Tensor:
|
79 |
+
""" construct the input as standard
|
80 |
+
imgs: NxBxHxWx3, uint8
|
81 |
+
"""
|
82 |
+
if isinstance(imgs, list):
|
83 |
+
_imgs = np.array(imgs)[..., np.newaxis] # TxHxWx3x1
|
84 |
+
elif isinstance(imgs, np.ndarray):
|
85 |
+
_imgs = imgs
|
86 |
+
else:
|
87 |
+
raise ValueError(f'imgs type error: {type(imgs)}')
|
88 |
+
|
89 |
+
y = _imgs.astype(np.float32) / 255.
|
90 |
+
y = np.clip(y, 0, 1) # clip to 0~1
|
91 |
+
y = torch.from_numpy(y).permute(0, 4, 3, 1, 2) # TxHxWx3x1 -> Tx1x3xHxW
|
92 |
+
return y
|
93 |
+
|
94 |
+
def extract_feature_3d(self, x: torch.Tensor) -> torch.Tensor:
|
95 |
+
""" get the appearance feature of the image by F
|
96 |
+
x: Bx3xHxW, normalized to 0~1
|
97 |
+
"""
|
98 |
+
with torch.no_grad():
|
99 |
+
feature_3d = self.appearance_feature_extractor(x)
|
100 |
+
return feature_3d
|
101 |
+
|
102 |
+
def get_kp_info(self, x: torch.Tensor, **kwargs) -> dict:
|
103 |
+
""" get the implicit keypoint information
|
104 |
+
x: Bx3xHxW, normalized to 0~1
|
105 |
+
flag_refine_info: whether to transform the pose to degrees and the dimension of the reshape
|
106 |
+
return: A dict contains keys: 'pitch', 'yaw', 'roll', 't', 'exp', 'scale', 'kp'
|
107 |
+
"""
|
108 |
+
with torch.no_grad():
|
109 |
+
kp_info = self.motion_extractor(x)
|
110 |
+
|
111 |
+
flag_refine_info: bool = kwargs.get('flag_refine_info', True)
|
112 |
+
if flag_refine_info:
|
113 |
+
bs = kp_info['kp'].shape[0]
|
114 |
+
kp_info['pitch'] = headpose_pred_to_degree(kp_info['pitch'])[:, None] # Bx1
|
115 |
+
kp_info['yaw'] = headpose_pred_to_degree(kp_info['yaw'])[:, None] # Bx1
|
116 |
+
kp_info['roll'] = headpose_pred_to_degree(kp_info['roll'])[:, None] # Bx1
|
117 |
+
kp_info['kp'] = kp_info['kp'].reshape(bs, -1, 3) # BxNx3
|
118 |
+
kp_info['exp'] = kp_info['exp'].reshape(bs, -1, 3) # BxNx3
|
119 |
+
|
120 |
+
return kp_info
|
121 |
+
|
122 |
+
def get_pose_dct(self, kp_info: dict) -> dict:
|
123 |
+
pose_dct = dict(
|
124 |
+
pitch=headpose_pred_to_degree(kp_info['pitch']).item(),
|
125 |
+
yaw=headpose_pred_to_degree(kp_info['yaw']).item(),
|
126 |
+
roll=headpose_pred_to_degree(kp_info['roll']).item(),
|
127 |
+
)
|
128 |
+
return pose_dct
|
129 |
+
|
130 |
+
def get_fs_and_kp_info(self, source_prepared, driving_first_frame):
|
131 |
+
# get the canonical keypoints of source image by M
|
132 |
+
source_kp_info = self.get_kp_info(source_prepared, flag_refine_info=True)
|
133 |
+
source_rotation = get_rotation_matrix(source_kp_info['pitch'], source_kp_info['yaw'], source_kp_info['roll'])
|
134 |
+
|
135 |
+
# get the canonical keypoints of first driving frame by M
|
136 |
+
driving_first_frame_kp_info = self.get_kp_info(driving_first_frame, flag_refine_info=True)
|
137 |
+
driving_first_frame_rotation = get_rotation_matrix(
|
138 |
+
driving_first_frame_kp_info['pitch'],
|
139 |
+
driving_first_frame_kp_info['yaw'],
|
140 |
+
driving_first_frame_kp_info['roll']
|
141 |
+
)
|
142 |
+
|
143 |
+
# get feature volume by F
|
144 |
+
source_feature_3d = self.extract_feature_3d(source_prepared)
|
145 |
+
|
146 |
+
return source_kp_info, source_rotation, source_feature_3d, driving_first_frame_kp_info, driving_first_frame_rotation
|
147 |
+
|
148 |
+
def transform_keypoint(self, kp_info: dict):
|
149 |
+
"""
|
150 |
+
transform the implicit keypoints with the pose, shift, and expression deformation
|
151 |
+
kp: BxNx3
|
152 |
+
"""
|
153 |
+
kp = kp_info['kp'] # (bs, k, 3)
|
154 |
+
pitch, yaw, roll = kp_info['pitch'], kp_info['yaw'], kp_info['roll']
|
155 |
+
|
156 |
+
t, exp = kp_info['t'], kp_info['exp']
|
157 |
+
scale = kp_info['scale']
|
158 |
+
|
159 |
+
pitch = headpose_pred_to_degree(pitch)
|
160 |
+
yaw = headpose_pred_to_degree(yaw)
|
161 |
+
roll = headpose_pred_to_degree(roll)
|
162 |
+
|
163 |
+
bs = kp.shape[0]
|
164 |
+
if kp.ndim == 2:
|
165 |
+
num_kp = kp.shape[1] // 3 # Bx(num_kpx3)
|
166 |
+
else:
|
167 |
+
num_kp = kp.shape[1] # Bxnum_kpx3
|
168 |
+
|
169 |
+
rot_mat = get_rotation_matrix(pitch, yaw, roll) # (bs, 3, 3)
|
170 |
+
|
171 |
+
# Eqn.2: s * (R * x_c,s + exp) + t
|
172 |
+
kp_transformed = kp.view(bs, num_kp, 3) @ rot_mat + exp.view(bs, num_kp, 3)
|
173 |
+
kp_transformed *= scale[..., None] # (bs, k, 3) * (bs, 1, 1) = (bs, k, 3)
|
174 |
+
kp_transformed[:, :, 0:2] += t[:, None, 0:2] # remove z, only apply tx ty
|
175 |
+
|
176 |
+
return kp_transformed
|
177 |
+
|
178 |
+
def retarget_eye(self, kp_source: torch.Tensor, eye_close_ratio: torch.Tensor) -> torch.Tensor:
|
179 |
+
"""
|
180 |
+
kp_source: BxNx3
|
181 |
+
eye_close_ratio: Bx3
|
182 |
+
Return: Bx(3*num_kp+2)
|
183 |
+
"""
|
184 |
+
feat_eye = concat_feat(kp_source, eye_close_ratio)
|
185 |
+
|
186 |
+
with torch.no_grad():
|
187 |
+
delta = self.stitching_retargeting_module['eye'](feat_eye)
|
188 |
+
|
189 |
+
return delta
|
190 |
+
|
191 |
+
def retarget_lip(self, kp_source: torch.Tensor, lip_close_ratio: torch.Tensor) -> torch.Tensor:
|
192 |
+
"""
|
193 |
+
kp_source: BxNx3
|
194 |
+
lip_close_ratio: Bx2
|
195 |
+
"""
|
196 |
+
feat_lip = concat_feat(kp_source, lip_close_ratio)
|
197 |
+
|
198 |
+
with torch.no_grad():
|
199 |
+
delta = self.stitching_retargeting_module['lip'](feat_lip)
|
200 |
+
|
201 |
+
return delta
|
202 |
+
|
203 |
+
def stitch(self, kp_source: torch.Tensor, kp_driving: torch.Tensor) -> torch.Tensor:
|
204 |
+
"""
|
205 |
+
kp_source: BxNx3
|
206 |
+
kp_driving: BxNx3
|
207 |
+
Return: Bx(3*num_kp+2)
|
208 |
+
"""
|
209 |
+
feat_stiching = concat_feat(kp_source, kp_driving)
|
210 |
+
|
211 |
+
with torch.no_grad():
|
212 |
+
delta = self.stitching_retargeting_module['stitching'](feat_stiching)
|
213 |
+
|
214 |
+
return delta
|
215 |
+
|
216 |
+
def stitching(self, kp_source: torch.Tensor, kp_driving: torch.Tensor) -> torch.Tensor:
|
217 |
+
""" conduct the stitching
|
218 |
+
kp_source: Bxnum_kpx3
|
219 |
+
kp_driving: Bxnum_kpx3
|
220 |
+
"""
|
221 |
+
if self.stitching_retargeting_module is not None:
|
222 |
+
bs, num_kp = kp_source.shape[:2]
|
223 |
+
|
224 |
+
kp_driving_new = kp_driving.clone()
|
225 |
+
delta = self.stitch(kp_source, kp_driving_new)
|
226 |
+
|
227 |
+
delta_exp = delta[..., :3*num_kp].reshape(bs, num_kp, 3) # 1x20x3
|
228 |
+
delta_tx_ty = delta[..., 3*num_kp:3*num_kp+2].reshape(bs, 1, 2) # 1x1x2
|
229 |
+
|
230 |
+
kp_driving_new += delta_exp
|
231 |
+
kp_driving_new[..., :2] += delta_tx_ty
|
232 |
+
|
233 |
+
return kp_driving_new
|
234 |
+
|
235 |
+
return kp_driving
|
236 |
+
|
237 |
+
def warp_decode(self, feature_3d: torch.Tensor, kp_source: torch.Tensor, kp_driving: torch.Tensor) -> torch.Tensor:
|
238 |
+
""" get the image after the warping of the implicit keypoints
|
239 |
+
feature_3d: Bx32x16x64x64, feature volume
|
240 |
+
kp_source: BxNx3
|
241 |
+
kp_driving: BxNx3
|
242 |
+
"""
|
243 |
+
# The line 18 in Algorithm 1: D(W(f_s; x_s, x′_d,i))
|
244 |
+
with torch.no_grad():
|
245 |
+
# get decoder input
|
246 |
+
ret_dct = self.warping_module(feature_3d, kp_source=kp_source, kp_driving=kp_driving)
|
247 |
+
# decode
|
248 |
+
ret_dct['out'] = self.spade_generator(feature=ret_dct['out'])
|
249 |
+
|
250 |
+
return ret_dct
|
251 |
+
|
252 |
+
def parse_output(self, out: torch.Tensor) -> np.ndarray:
|
253 |
+
""" construct the output as standard
|
254 |
+
return: 1xHxWx3, uint8
|
255 |
+
"""
|
256 |
+
out = np.transpose(out.data.numpy(), [0, 2, 3, 1]) # 1x3xHxW -> 1xHxWx3
|
257 |
+
out = np.clip(out, 0, 1) # clip to 0~1
|
258 |
+
out = np.clip(out * 255, 0, 255).astype(np.uint8) # 0~1 -> 0~255
|
259 |
+
|
260 |
+
return out
|
261 |
+
|
262 |
+
def calc_retargeting_ratio(self, source_lmk, driving_lmk_lst):
|
263 |
+
input_eye_ratio_lst = []
|
264 |
+
input_lip_ratio_lst = []
|
265 |
+
for lmk in driving_lmk_lst:
|
266 |
+
# for eyes retargeting
|
267 |
+
input_eye_ratio_lst.append(calc_eye_close_ratio(lmk[None]))
|
268 |
+
# for lip retargeting
|
269 |
+
input_lip_ratio_lst.append(calc_lip_close_ratio(lmk[None]))
|
270 |
+
return input_eye_ratio_lst, input_lip_ratio_lst
|
271 |
+
|
272 |
+
def calc_combined_eye_ratio(self, input_eye_ratio, source_lmk):
|
273 |
+
eye_close_ratio = calc_eye_close_ratio(source_lmk[None])
|
274 |
+
eye_close_ratio_tensor = torch.from_numpy(eye_close_ratio).float().to(self.device)
|
275 |
+
input_eye_ratio_tensor = torch.tensor([input_eye_ratio[0][0]]).reshape(1, 1).to(self.device)
|
276 |
+
# [c_s,eyes, c_d,eyes,i]
|
277 |
+
combined_eye_ratio_tensor = torch.cat([eye_close_ratio_tensor, input_eye_ratio_tensor], dim=1)
|
278 |
+
return combined_eye_ratio_tensor
|
279 |
+
|
280 |
+
def calc_combined_lip_ratio(self, input_lip_ratio, source_lmk):
|
281 |
+
lip_close_ratio = calc_lip_close_ratio(source_lmk[None])
|
282 |
+
lip_close_ratio_tensor = torch.from_numpy(lip_close_ratio).float().to(self.device)
|
283 |
+
# [c_s,lip, c_d,lip,i]
|
284 |
+
input_lip_ratio_tensor = torch.tensor([input_lip_ratio[0]]).to(self.device)
|
285 |
+
if input_lip_ratio_tensor.shape != torch.Size([1, 1]):
|
286 |
+
input_lip_ratio_tensor = input_lip_ratio_tensor.reshape(1, 1)
|
287 |
+
combined_lip_ratio_tensor = torch.cat([lip_close_ratio_tensor, input_lip_ratio_tensor], dim=1)
|
288 |
+
return combined_lip_ratio_tensor
|