|
<h1 align="center">LivePortrait: Efficient Portrait Animation with Stitching and Retargeting Control</h1> |
|
|
|
<div align='center'> |
|
<a href='https://github.com/cleardusk' target='_blank'><strong>Jianzhu Guo</strong></a><sup> 1β </sup>  |
|
<a href='https://github.com/KwaiVGI' target='_blank'><strong>Dingyun Zhang</strong></a><sup> 1,2</sup>  |
|
<a href='https://github.com/KwaiVGI' target='_blank'><strong>Xiaoqiang Liu</strong></a><sup> 1</sup>  |
|
<a href='https://github.com/KwaiVGI' target='_blank'><strong>Zhizhou Zhong</strong></a><sup> 1,3</sup>  |
|
<a href='https://scholar.google.com.hk/citations?user=_8k1ubAAAAAJ' target='_blank'><strong>Yuan Zhang</strong></a><sup> 1</sup>  |
|
</div> |
|
|
|
<div align='center'> |
|
<a href='https://scholar.google.com/citations?user=P6MraaYAAAAJ' target='_blank'><strong>Pengfei Wan</strong></a><sup> 1</sup>  |
|
<a href='https://openreview.net/profile?id=~Di_ZHANG3' target='_blank'><strong>Di Zhang</strong></a><sup> 1</sup>  |
|
</div> |
|
|
|
<div align='center'> |
|
<sup>1 </sup>Kuaishou Technology  <sup>2 </sup>University of Science and Technology of China  <sup>3 </sup>Fudan University  |
|
</div> |
|
|
|
<br> |
|
<div align="center"> |
|
<!-- <a href='LICENSE'><img src='https://img.shields.io/badge/license-MIT-yellow'></a> --> |
|
<a href='https://liveportrait.github.io'><img src='https://img.shields.io/badge/Project-Homepage-green'></a> |
|
<a href='https://arxiv.org/pdf/2407.03168'><img src='https://img.shields.io/badge/Paper-arXiv-red'></a> |
|
</div> |
|
<br> |
|
|
|
<p align="center"> |
|
<img src="./assets/docs/showcase2.gif" alt="showcase"> |
|
<br> |
|
π₯ For more results, visit our <a href="https://liveportrait.github.io/"><strong>homepage</strong></a> π₯ |
|
</p> |
|
|
|
|
|
|
|
## π₯ Updates |
|
- **`2024/07/04`**: π₯ We released the initial version of the inference code and models. Continuous updates, stay tuned! |
|
- **`2024/07/04`**: π We released the [homepage](https://liveportrait.github.io) and technical report on [arXiv](https://arxiv.org/pdf/2407.03168). |
|
|
|
## Introduction |
|
This repo, named **LivePortrait**, contains the official PyTorch implementation of our paper [LivePortrait: Efficient Portrait Animation with Stitching and Retargeting Control](https://arxiv.org/pdf/2407.03168). |
|
We are actively updating and improving this repository. If you find any bugs or have suggestions, welcome to raise issues or submit pull requests (PR) π. |
|
|
|
## π₯ Getting Started |
|
### 1. Clone the code and prepare the environment |
|
```bash |
|
git clone https://github.com/KwaiVGI/LivePortrait |
|
cd LivePortrait |
|
|
|
# create env using conda |
|
conda create -n LivePortrait python==3.9.18 |
|
conda activate LivePortrait |
|
# install dependencies with pip |
|
pip install -r requirements.txt |
|
``` |
|
|
|
### 2. Download pretrained weights |
|
Download our pretrained LivePortrait weights and face detection models of InsightFace from [Google Drive](https://drive.google.com/drive/folders/1UtKgzKjFAOmZkhNK-OYT0caJ_w2XAnib) or [Baidu Yun](https://pan.baidu.com/s/1MGctWmNla_vZxDbEp2Dtzw?pwd=z5cn). We have packed all weights in one directory π. Unzip and place them in `./pretrained_weights` ensuring the directory structure is as follows: |
|
```text |
|
pretrained_weights |
|
βββ insightface |
|
β βββ models |
|
β βββ buffalo_l |
|
β βββ 2d106det.onnx |
|
β βββ det_10g.onnx |
|
βββ liveportrait |
|
βββ base_models |
|
β βββ appearance_feature_extractor.pth |
|
β βββ motion_extractor.pth |
|
β βββ spade_generator.pth |
|
β βββ warping_module.pth |
|
βββ landmark.onnx |
|
βββ retargeting_models |
|
βββ stitching_retargeting_module.pth |
|
``` |
|
|
|
### 3. Inference π |
|
|
|
```bash |
|
python inference.py |
|
``` |
|
|
|
If the script runs successfully, you will get an output mp4 file named `animations/s6--d0_concat.mp4`. This file includes the following results: driving video, input image, and generated result. |
|
|
|
<p align="center"> |
|
<img src="./assets/docs/inference.gif" alt="image"> |
|
</p> |
|
|
|
Or, you can change the input by specifying the `-s` and `-d` arguments: |
|
|
|
```bash |
|
python inference.py -s assets/examples/source/s9.jpg -d assets/examples/driving/d0.mp4 |
|
|
|
# or disable pasting back |
|
python inference.py -s assets/examples/source/s9.jpg -d assets/examples/driving/d0.mp4 --no_flag_pasteback |
|
|
|
# more options to see |
|
python inference.py -h |
|
``` |
|
|
|
**More interesting results can be found in our [Homepage](https://liveportrait.github.io)** π |
|
|
|
### 4. Gradio interface |
|
|
|
We also provide a Gradio interface for a better experience, just run by: |
|
|
|
```bash |
|
python app.py |
|
``` |
|
|
|
### 5. Inference speed evaluation πππ |
|
We have also provided a script to evaluate the inference speed of each module: |
|
|
|
```bash |
|
python speed.py |
|
``` |
|
|
|
Below are the results of inferring one frame on an RTX 4090 GPU using the native PyTorch framework with `torch.compile`: |
|
|
|
| Model | Parameters(M) | Model Size(MB) | Inference(ms) | |
|
|-----------------------------------|:-------------:|:--------------:|:-------------:| |
|
| Appearance Feature Extractor | 0.84 | 3.3 | 0.82 | |
|
| Motion Extractor | 28.12 | 108 | 0.84 | |
|
| Spade Generator | 55.37 | 212 | 7.59 | |
|
| Warping Module | 45.53 | 174 | 5.21 | |
|
| Stitching and Retargeting Modules| 0.23 | 2.3 | 0.31 | |
|
|
|
*Note: the listed values of Stitching and Retargeting Modules represent the combined parameter counts and the total sequential inference time of three MLP networks.* |
|
|
|
|
|
## Acknowledgements |
|
We would like to thank the contributors of [FOMM](https://github.com/AliaksandrSiarohin/first-order-model), [Open Facevid2vid](https://github.com/zhanglonghao1992/One-Shot_Free-View_Neural_Talking_Head_Synthesis), [SPADE](https://github.com/NVlabs/SPADE), [InsightFace](https://github.com/deepinsight/insightface) repositories, for their open research and contributions. |
|
|
|
## Citation π |
|
If you find LivePortrait useful for your research, welcome to π this repo and cite our work using the following BibTeX: |
|
```bibtex |
|
@article{guo2024live, |
|
title = {LivePortrait: Efficient Portrait Animation with Stitching and Retargeting Control}, |
|
author = {Jianzhu Guo and Dingyun Zhang and Xiaoqiang Liu and Zhizhou Zhong and Yuan Zhang and Pengfei Wan and Di Zhang}, |
|
year = {2024}, |
|
journal = {arXiv preprint:2407.03168}, |
|
} |
|
``` |
|
|