PRAli22's picture
Update app.py
1c4f840 verified
from transformers import AutoConfig, AutoModelForSequenceClassification, AutoTokenizer
import numpy as np
import gradio as gr
tokenizer = AutoTokenizer.from_pretrained("PRAli22/AraBert-Arabic-Sentiment-Analysis" )
model = AutoModelForSequenceClassification.from_pretrained("PRAli22/AraBert-Arabic-Sentiment-Analysis")
def classify_sentiment(text):
# Tokenize the text
inputs = tokenizer(text, return_tensors="pt")
# Get model predictions
outputs = model(**inputs)
predicted_label_index = np.argmax(outputs[0].detach().numpy()).item()
# Retrieve label names from the model's config
label_names = {0: 'Positive', 1: 'Negative', 2: 'Neutral', 3: 'Mixed'}
predicted_label = label_names[predicted_label_index]
return predicted_label
css_code='body{background-image:url("https://media.istockphoto.com/id/1256252051/vector/people-using-online-translation-app.jpg?s=612x612&w=0&k=20&c=aa6ykHXnSwqKu31fFR6r6Y1bYMS5FMAU9yHqwwylA94=");}'
demo = gr.Interface(
fn=classify_sentiment,
inputs=
gr.Textbox(label="sentence", placeholder=" Enter the sentence "),
outputs=[gr.Textbox(label="the sentiment")],
title="Arabic Sentiment Analyzer",
description= "This is Arabic Sentiment Analyzer, it takes an arabian sentence as input and returns the sentiment behind it",
css = css_code
)
demo.launch()