from transformers import AutoConfig, AutoModelForSequenceClassification, AutoTokenizer import numpy as np import gradio as gr tokenizer = AutoTokenizer.from_pretrained("PRAli22/AraBert-Arabic-Sentiment-Analysis" ) model = AutoModelForSequenceClassification.from_pretrained("PRAli22/AraBert-Arabic-Sentiment-Analysis") def classify_sentiment(text): # Tokenize the text inputs = tokenizer(text, return_tensors="pt") # Get model predictions outputs = model(**inputs) predicted_label_index = np.argmax(outputs[0].detach().numpy()).item() # Retrieve label names from the model's config label_names = {0: 'Positive', 1: 'Negative', 2: 'Neutral', 3: 'Mixed'} predicted_label = label_names[predicted_label_index] return predicted_label css_code='body{background-image:url("https://media.istockphoto.com/id/1256252051/vector/people-using-online-translation-app.jpg?s=612x612&w=0&k=20&c=aa6ykHXnSwqKu31fFR6r6Y1bYMS5FMAU9yHqwwylA94=");}' demo = gr.Interface( fn=classify_sentiment, inputs= gr.Textbox(label="sentence", placeholder=" Enter the sentence "), outputs=[gr.Textbox(label="the sentiment")], title="Arabic Sentiment Analyzer", description= "This is Arabic Sentiment Analyzer, it takes an arabian sentence as input and returns the sentiment behind it", css = css_code ) demo.launch()